Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Epilepsia ; 65(4): e47-e54, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345420

ABSTRACT

Nodular heterotopia (NH)-related drug-resistant epilepsy is challenging due to the deep location of the NH and the complexity of the underlying epileptogenic network. Using ictal stereo-electroencephalography (SEEG) and functional connectivity (FC) analyses in 14 patients with NH-related drug-resistant epilepsy, we aimed to determine the leading structure during seizures. For this purpose, we compared node IN and OUT strength between bipolar channels inside the heterotopia and inside gray matter, at the group level and at the individual level. At seizure onset, the channels within NH belonging to the epileptogenic and/or propagation network showed higher node OUT-strength than the channels within the gray matter (p = .03), with higher node OUT-strength than node IN-strength (p = .03). These results are in favor of a "leading" role of NH during seizure onset when involved in the epileptogenic- or propagation-zone network (50% of patients). However, when looking at the individual level, no significant difference between NH and gray matter was found, except for one patient (in two of three seizures). This result confirms the heterogeneity and the complexity of the epileptogenic network organization in NH and the need for SEEG exploration to characterize more precisely patient-specific epileptogenic network organization.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Periventricular Nodular Heterotopia , Humans , Periventricular Nodular Heterotopia/complications , Periventricular Nodular Heterotopia/diagnostic imaging , Epilepsy/diagnostic imaging , Seizures , Electroencephalography/methods , Cerebral Cortex , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery
2.
Epilepsia ; 65(2): 389-401, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041564

ABSTRACT

OBJECTIVE: Quantification of the epileptogenic zone network (EZN) most frequently implies analysis of seizure onset. However, important information can also be obtained from the postictal period, characterized by prominent changes in the EZN. We used permutation entropy (PE), a measure of signal complexity, to analyze the peri-ictal stereoelectroencephalography (SEEG) signal changes with emphasis on the postictal state. We sought to determine the best PE-derived parameter (PEDP) for identifying the EZN. METHODS: Several PEDPs were computed retrospectively on SEEG-recorded seizures of 86 patients operated on for drug-resistant epilepsy: mean baseline preictal entropy, minimum ictal entropy, maximum postictal entropy, the ratio between the maximum postictal and the minimum ictal entropy, and the ratio between the maximum postictal and the baseline preictal entropy. The performance of each biomarker was assessed by comparing the identified epileptogenic contacts or brain regions against the EZN defined by clinical analysis incorporating the Epileptogenicity Index and the connectivity epileptogenicity index methods (EZNc), using the receiver-operating characteristic and precision-recall. RESULTS: The ratio between the maximum postictal and the minimum ictal entropy (defined as the Permutation Entropy Index [PEI]) proved to be the best-performing PEDP to identify the EZNC . It demonstrated the highest area under the curve (AUC) and F1 score at the contact level (AUC 0.72; F1 0.39) and at the region level (AUC 0.78; F1 0.47). PEI values gradually decreased between the EZN, the propagation network, and the non-involved regions. PEI showed higher performance in patients with slow seizure-onset patterns than in those with fast seizure-onset patterns. The percentage of resected epileptogenic regions defined by PEI was significantly correlated with surgical outcome. SIGNIFICANCE: PEI is a promising tool to improve the delineation of the EZN. PEI combines ease and robustness in a routine clinical setting with high sensitivity for seizures without fast activity at seizure onset.


Subject(s)
Brain , Electroencephalography , Humans , Electroencephalography/methods , Retrospective Studies , Entropy , Brain/diagnostic imaging , Seizures
3.
Epilepsy Behav ; 156: 109806, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677102

ABSTRACT

SEEG-guided radiofrequency thermocoagulation (RF-TC) in the epileptogenic regions is a therapeutic option for patients with drug-resistant focal epilepsy who may have or not indication for epilepsy surgery. The most common adverse events of RF-TC are seizures, headaches, somatic pain, and sensory-motor deficits. If RF-TC could lead to psychiatric complications is unknown. In the present study, seven out of 164 patients (4.2 %) experienced psychiatric decompensation with or without memory deterioration after RF-TC of bilateral or unilateral amygdala and hippocampus. The appearance of symptoms was either acute, subacute, or chronic and the symptoms were either transient or lasted for several months. Common features among these patients were female sex, mesial temporal epilepsy, and a pre-existing history of psychological distress and memory dysfunction. Our study highlights the possibility of neuropsychiatric deterioration in specific patients following SEEG-guided RF-TC, despite its rarity.


Subject(s)
Drug Resistant Epilepsy , Electrocoagulation , Humans , Female , Male , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/psychology , Adult , Middle Aged , Young Adult , Electrocoagulation/adverse effects , Electrocoagulation/methods , Mental Disorders/etiology , Mental Disorders/psychology , Electroencephalography , Adolescent , Electrocorticography , Hippocampus , Epilepsies, Partial/surgery , Epilepsies, Partial/psychology , Postoperative Complications/etiology , Postoperative Complications/psychology , Retrospective Studies , Amygdala/surgery
4.
Hum Brain Mapp ; 44(13): 4754-4771, 2023 09.
Article in English | MEDLINE | ID: mdl-37436095

ABSTRACT

Focal epilepsy is characterized by repeated spontaneous seizures that originate from cortical epileptogenic zone networks (EZN). Analysis of intracerebral recordings showed that subcortical structures, and in particular the thalamus, play an important role in seizure dynamics as well, supporting their structural alterations reported in the neuroimaging literature. Nonetheless, between-patient differences in EZN localization (e.g., temporal vs. non-temporal lobe epilepsy) as well as extension (i.e., number of epileptogenic regions) might impact the magnitude as well as spatial distribution of subcortical structural changes. Here we used 7 Tesla MRI T1 data to provide an unprecedented description of subcortical morphological (volume, tissue deformation, and shape) and longitudinal relaxation (T1 ) changes in focal epilepsy patients and evaluate the impact of the EZN and other patient-specific clinical features. Our results showed variable levels of atrophy across thalamic nuclei that appeared most prominent in the temporal lobe epilepsy group and the side ipsilateral to the EZN, while shortening of T1 was especially observed for the lateral thalamus. Multivariate analyses across thalamic nuclei and basal ganglia showed that volume acted as the dominant discriminator between patients and controls, while (posterolateral) thalamic T1 measures looked promising to further differentiate patients based on EZN localization. In particular, the observed differences in T1 changes between thalamic nuclei indicated differential involvement based on EZN localization. Finally, EZN extension was found to best explain the observed variability between patients. To conclude, this work revealed multi-scale subcortical alterations in focal epilepsy as well as their dependence on several clinical characteristics.


Subject(s)
Epilepsies, Partial , Epilepsy, Temporal Lobe , Humans , Epilepsies, Partial/diagnostic imaging , Basal Ganglia/diagnostic imaging , Seizures , Thalamus/diagnostic imaging , Magnetic Resonance Imaging
5.
Hum Brain Mapp ; 44(2): 825-840, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36217746

ABSTRACT

Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.


Subject(s)
Epilepsy , Protons , Humans , Magnetic Resonance Imaging/methods , Electroencephalography/methods , Epilepsy/diagnostic imaging , Epilepsy/surgery , Epilepsy/metabolism , Sodium/metabolism
6.
Epilepsia ; 64(6): 1582-1593, 2023 06.
Article in English | MEDLINE | ID: mdl-37032394

ABSTRACT

OBJECTIVE: Stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) aims to reduce seizure frequency by modifying epileptogenic networks through local thermocoagulative lesions. Although RF-TC is hypothesized to functionally modify brain networks, reports of changes in functional connectivity (FC) following the procedure are missing. We evaluated, by means of SEEG recordings, whether variation in brain activity after RF-TC is related to clinical outcome. METHODS: Interictal SEEG recordings from 33 patients with drug-resistant epilepsy (DRE) were analyzed. Therapeutic response was defined as a >50% reduction in seizure frequency for at least 1 month following RF-TC. Local (power spectral density [PSD]) and FC changes were evaluated in 3-min segments recorded shortly before (baseline), shortly after, and 15 min after RF-TC. The PSD and FC strength values after thermocoagulation were compared with baseline as well as between the responder and nonresponder groups. RESULTS: In responders, we found a significant reduction in PSD after RF-TC in channels that were thermocoagulated for all frequency bands (p = .007 for broad, delta and theta, p <.001 for alpha and beta bands). However, we did not observe such PSD decrease in nonresponders. At the network level, nonresponders displayed a significant FC increase in all frequency bands except theta (broad, delta, beta band: p <.001; alpha band: p <.01), although responders showed a significant FC decrease in delta (p <.001) and alpha bands (p <.05). Nonresponders showed stronger FC changes with respect to responders exclusively in TC channels (broad, alpha, theta, beta: p >.05; delta: p = .001). SIGNIFICANCE: Thermocoagulation induces both local and network-related (FC) changes in electrical brain activity of patients with DRE lasting for at least 15 min. This study demonstrates that the observed short-term modifications in brain network and local activity significantly differ between responders and nonresponders and opens new perspectives for studying the longer-lasting FC changes after RF-TC.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Humans , Electroencephalography/methods , Treatment Outcome , Drug Resistant Epilepsy/surgery , Seizures , Brain/diagnostic imaging , Brain/surgery , Stereotaxic Techniques , Electrocoagulation/methods
7.
Epilepsia ; 64(8): 2027-2043, 2023 08.
Article in English | MEDLINE | ID: mdl-37199673

ABSTRACT

OBJECTIVE: We studied the rate dynamics of interictal events occurring over fast-ultradian time scales, as commonly examined in clinics to guide surgical planning in epilepsy. METHODS: Stereo-electroencephalography (SEEG) traces of 35 patients with good surgical outcome (Engel I) were analyzed. For this we developed a general data mining method aimed at clustering the plethora of transient waveform shapes including interictal epileptiform discharges (IEDs) and assessed the temporal fluctuations in the capability of mapping the epileptogenic zone (EZ) of each type of event. RESULTS: We found that the fast-ultradian dynamics of the IED rate may effectively impair the precision of EZ identification, and appear to occur spontaneously, that is, not triggered by or exclusively associated with a particular cognitive task, wakefulness, sleep, seizure occurrence, post-ictal state, or antiepileptic drug withdrawal. Propagation of IEDs from the EZ to the propagation zone (PZ) could explain the observed fast-ultradian fluctuations in a reduced fraction of the analyzed patients, suggesting that other factors like the excitability of the epileptogenic tissue could play a more relevant role. A novel link was found between the fast-ultradian dynamics of the overall rate of polymorphic events and the rate of specific IEDs subtypes. We exploited this feature to estimate in each patient the 5 min interictal epoch for near-optimal EZ and resected-zone (RZ) localization. This approach produces at the population level a better EZ/RZ classification when compared to both (1) the whole time series available in each patient (p = .084 for EZ, p < .001 for RZ, Wilcoxon signed-rank test) and (2) 5 min epochs sampled randomly from the interictal recordings of each patient (p < .05 for EZ, p < .001 for RZ, 105 random samplings). SIGNIFICANCE: Our results highlight the relevance of the fast-ultradian IED dynamics in mapping the EZ, and show how this dynamics can be estimated prospectively to inform surgical planning in epilepsy.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Humans , Drug Resistant Epilepsy/surgery , Seizures , Epilepsy/surgery , Electroencephalography/methods , Epilepsies, Partial/surgery
8.
Epilepsy Behav ; 142: 109175, 2023 05.
Article in English | MEDLINE | ID: mdl-37003103

ABSTRACT

How status epilepticus (SE) is generated and propagates in the brain is not known. As for seizures, a patient-specific approach is necessary, and the analysis should be performed at the whole brain level. Personalized brain models can be used to study seizure genesis and propagation at the whole brain scale in The Virtual Brain (TVB), using the Epileptor mathematical construct. Building on the fact that SE is part of the repertoire of activities that the Epileptor can generate, we present the first attempt to model SE at the whole brain scale in TVB, using data from a patient who experienced SE during presurgical evaluation. Simulations reproduced the patterns found with SEEG recordings. We find that if, as expected, the pattern of SE propagation correlates with the properties of the patient's structural connectome, SE propagation also depends upon the global state of the network, i.e., that SE propagation is an emergent property. We conclude that individual brain virtualization can be used to study SE genesis and propagation. This type of theoretical approach may be used to design novel interventional approaches to stop SE. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.


Subject(s)
Connectome , Status Epilepticus , Humans , Status Epilepticus/diagnostic imaging , Seizures , Brain/diagnostic imaging , London
9.
Epilepsia ; 63(8): 1942-1955, 2022 08.
Article in English | MEDLINE | ID: mdl-35604575

ABSTRACT

OBJECTIVE: The virtual epileptic patient (VEP) is a large-scale brain modeling method based on virtual brain technology, using stereoelectroencephalography (SEEG), anatomical data (magnetic resonance imaging [MRI] and connectivity), and a computational neuronal model to provide computer simulations of a patient's seizures. VEP has potential interest in the presurgical evaluation of drug-resistant epilepsy by identifying regions most likely to generate seizures. We aimed to assess the performance of the VEP approach in estimating the epileptogenic zone and in predicting surgical outcome. METHODS: VEP modeling was retrospectively applied in a cohort of 53 patients with pharmacoresistant epilepsy and available SEEG, T1-weighted MRI, and diffusion-weighted MRI. Precision recall was used to compare the regions identified as epileptogenic by VEP (EZVEP ) to the epileptogenic zone defined by clinical analysis incorporating the Epileptogenicity Index (EI) method (EZC ). In 28 operated patients, we compared the VEP results and clinical analysis with surgical outcome. RESULTS: VEP showed a precision of 64% and a recall of 44% for EZVEP detection compared to EZC . There was a better concordance of VEP predictions with clinical results, with higher precision (77%) in seizure-free compared to non-seizure-free patients. Although the completeness of resection was significantly correlated with surgical outcome for both EZC and EZVEP , there was a significantly higher number of regions defined as epileptogenic exclusively by VEP that remained nonresected in non-seizure-free patients. SIGNIFICANCE: VEP is the first computational model that estimates the extent and organization of the epileptogenic zone network. It is characterized by good precision in detecting epileptogenic regions as defined by a combination of visual analysis and EI. The potential impact of VEP on improving surgical prognosis remains to be exploited. Analysis of factors limiting the performance of the actual model is crucial for its further development.


Subject(s)
Electroencephalography , Epilepsy , Brain/diagnostic imaging , Brain/surgery , Electroencephalography/methods , Epilepsy/diagnostic imaging , Epilepsy/surgery , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies , Seizures/surgery , Treatment Outcome
10.
Epilepsia ; 62(9): 2048-2059, 2021 09.
Article in English | MEDLINE | ID: mdl-34272883

ABSTRACT

OBJECTIVE: Stereo-electroencephalography (SEEG)-guided radiofrequency thermocoagulation (RF-TC) aims at modifying epileptogenic networks to reduce seizure frequency. High-frequency oscillations (HFOs), spikes, and cross-rate are quantifiable epileptogenic biomarkers. In this study, we sought to evaluate, using SEEG signals recorded before and after thermocoagulation, whether a variation in these markers is related to the therapeutic effect of this procedure and to the outcome of surgery. METHODS: Interictal segments of SEEG signals were analyzed in 38 patients during presurgical evaluation. We used an automatized method to quantify the rate of spikes, rate of HFOs, and cross-rate (a measure combining spikes and HFOs) before and after thermocoagulation. We analyzed the differences both at an individual level with a surrogate approach and at a group level with analysis of variance. We then evaluated the correlation between these variations and the clinical response to RF-TC and to subsequent resective surgery. RESULTS: After thermocoagulation, 19 patients showed a clinical improvement. At the individual level, clinically improved patients more frequently had a reduction in spikes and cross-rate in the epileptogenic zone than patients without clinical improvement (p = .002, p = .02). At a group level, there was a greater decrease of HFOs in epileptogenic and thermocoagulated zones in patients with clinical improvement (p < .05) compared to those with no clinical benefit. Eventually, a significant decrease of all the markers after RF-TC was found in patients with a favorable outcome of resective surgery (spikes, p = .026; HFOs, p = .03; cross-rate, p = .03). SIGNIFICANCE: Quantified changes in the rate of spikes, rate of HFOs, and cross-rate can be observed after thermocoagulation, and the reduction of these markers correlates with a favorable clinical outcome after RF-TC and with successful resective surgery. This may suggest that interictal biomarker modifications after RF-TC can be clinically used to predict the effectiveness of the thermocoagulation procedure and the outcome of resective surgery.


Subject(s)
Electrocoagulation , Electroencephalography , Biomarkers , Humans , Imaging, Three-Dimensional , Seizures , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL