Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Dis Model Mech ; 11(10)2018 10 08.
Article in English | MEDLINE | ID: mdl-30158213

ABSTRACT

Generalized arterial calcification of infancy (GACI) is a rare, life-threatening disorder caused by loss-of-function mutations in the gene encoding ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), which normally hydrolyzes extracellular ATP into AMP and pyrophosphate (PPi). The disease is characterized by extensive arterial calcification and stenosis of large- and medium-sized vessels, leading to vascular-related complications of hypertension and heart failure. There is currently no effective treatment available, but bisphosphonates - nonhydrolyzable PPi analogs - are being used off-label to reduce arterial calcification, although this has no reported impact on the hypertension and cardiac dysfunction features of GACI. In this study, the efficacy of a recombinant human ENPP1 protein therapeutic (rhENPP1) was tested in Enpp1asj-2J homozygous mice (Asj-2J or Asj-2J hom), a model previously described to show extensive mineralization in the arterial vasculature, similar to GACI patients. In a disease prevention study, Asj-2J mice treated with rhENPP1 for 3 weeks showed >95% reduction in aorta calcification. Terminal hemodynamics and echocardiography imaging of Asj-2J mice also revealed that a 6-week rhENPP1 treatment normalized elevated arterial and left ventricular pressure, which translated into significant improvements in myocardial compliance, contractility, heart workload and global cardiovascular efficiency. This study suggests that ENPP1 enzyme replacement therapy could be a more effective GACI therapeutic than bisphosphonates, treating not just the vascular calcification, but also the hypertension that eventually leads to cardiac failure in GACI patients.


Subject(s)
Blood Pressure , Cardiovascular System/physiopathology , Enzyme Replacement Therapy , Phosphoric Diester Hydrolases/therapeutic use , Pyrophosphatases/therapeutic use , Vascular Calcification/physiopathology , Vascular Calcification/therapy , Animals , Diphosphates/blood , Disease Models, Animal , Humans , Mice , Mice, Inbred BALB C , Organ Specificity , Phosphoric Diester Hydrolases/pharmacokinetics , Pyrophosphatases/pharmacokinetics , Vascular Calcification/blood , Vascular Calcification/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL