Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Proteome Res ; 18(9): 3369-3382, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31408348

ABSTRACT

Lung cancer is the most common cause of cancer-related mortality worldwide, characterized by late clinical presentation (49-53% of patients are diagnosed at stage IV) and consequently poor outcomes. One challenge in identifying biomarkers of early disease is the collection of samples from patients prior to symptomatic presentation. We used blood collected during surgical resection of lung tumors in an iTRAQ isobaric tagging experiment to identify proteins effluxing from tumors into pulmonary veins. Forty proteins were identified as having an increased abundance in the vein draining from the tumor compared to "healthy" pulmonary veins. These protein markers were then assessed in a second cohort that utilized the mass spectrometry (MS) technique: Sequential window acquisition of all theoretical fragment ion spectra (SWATH) MS. SWATH-MS was used to measure proteins in serum samples taken from 25 patients <50 months prior to and at lung cancer diagnosis and 25 matched controls. The SWATH-MS analysis alone produced an 11 protein marker panel. A machine learning classification model was generated that could discriminate patient samples from patients within 12 months of lung cancer diagnosis and control samples. The model was evaluated as having a mean AUC of 0.89, with an accuracy of 0.89. This panel was combined with the SWATH-MS data from one of the markers from the first cohort to create a 12 protein panel. The proteome signature developed for lung cancer risk can now be developed on further cohorts.


Subject(s)
Biomarkers, Tumor/blood , Early Detection of Cancer/methods , Lung Neoplasms/blood , Proteomics , Aged , Female , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Machine Learning , Male , Middle Aged , Neoplasm Staging , Proteome/genetics , Tandem Mass Spectrometry/methods
2.
BMC Genomics ; 15: 293, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24886317

ABSTRACT

BACKGROUND: Sex allocation of offspring in mammals is usually considered as a matter of chance, being dependent on whether an X- or a Y-chromosome-bearing spermatozoon reaches the oocyte first. Here we investigated the alternative possibility, namely that the oviducts can recognise X- and Y- spermatozoa, and may thus be able to bias the offspring sex ratio. RESULTS: By introducing X- or Y-sperm populations into the two separate oviducts of single female pigs using bilateral laparoscopic insemination we found that the spermatozoa did indeed elicit sex-specific transcriptomic responses. Microarray analysis revealed that 501 were consistently altered (P-value < 0.05) in the oviduct in the presence of Y-chromosome-bearing spermatozoa compared to the presence of X-chromosome-bearing spermatozoa. From these 501 transcripts, 271 transcripts (54.1%) were down-regulated and 230 transcripts (45.9%) were up-regulated when the Y- chromosome-bearing spermatozoa was present in the oviduct. Our data showed that local immune responses specific to each sperm type were elicited within the oviduct. In addition, either type of spermatozoa elicits sex-specific signal transduction signalling by oviductal cells. CONCLUSIONS: Our data suggest that the oviduct functions as a biological sensor that screens the spermatozoon, and then responds by modifying the oviductal environment. We hypothesize that there might exist a gender biasing mechanism controlled by the female.


Subject(s)
Oviducts/physiology , Sex Determination Processes , Spermatozoa/metabolism , Transcriptome , X Chromosome , Y Chromosome , Animals , Female , Male , Swine
SELECTION OF CITATIONS
SEARCH DETAIL