Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Publication year range
1.
Oncologist ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237103

ABSTRACT

Lung cancer is the leading cause of cancer death in the US and globally. The mortality from lung cancer has been declining, due to a reduction in incidence and advances in treatment. Although recent success in developing targeted and immunotherapies for lung cancer has benefitted patients, it has also expanded the complexity of potential treatment options for health care providers. To aid in reducing such complexity, experts in oncology convened a conference (Bridging the Gaps in Lung Cancer) to identify current knowledge gaps and controversies in the diagnosis, treatment, and outcomes of various lung cancer scenarios, as described here. Such scenarios relate to biomarkers and testing in lung cancer, small cell lung cancer, EGFR mutations and targeted therapy in non-small cell lung cancer (NSCLC), early-stage NSCLC, KRAS/BRAF/MET and other genomic alterations in NSCLC, and immunotherapy in advanced NSCLC.

2.
Cancer Immunol Immunother ; 73(11): 234, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271499

ABSTRACT

The clinical response to immune checkpoint inhibitors may vary by tumor type and many tumors present with either primary or acquired resistance to immunotherapy. Improved understanding of the molecular and immunologic mechanisms underlying immunotherapy resistance is essential for developing biomarkers and for guiding the optimum approach to selecting treatment regimens and sequencing. This is increasingly important for tumors with primary resistance as effective biomarkers in this setting can guide clinicians about appropriate treatment regimen selection in the first-line setting. Multiple potential biological mechanisms of primary resistance have been proposed but most are yet to be validated in prospective clinical cohorts. Individual biomarkers have poor specificity and sensitivity, and the development of validated and integrated predictive models may guide which patient will benefit from monotherapy versus combination therapy. In this review, we discuss the emerging data identifying the molecular mechanisms of primary resistance to immunotherapy and explore potential therapeutic strategies to target these.


Subject(s)
Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/therapy , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Genomics/methods , Biomarkers, Tumor/genetics , Immunotherapy/methods , Animals
3.
Ann Neurol ; 94(5): 955-968, 2023 11.
Article in English | MEDLINE | ID: mdl-37539981

ABSTRACT

OBJECTIVE: Delandistrogene moxeparvovec is approved in the USA for the treatment of ambulatory patients (4-5 years) with Duchenne muscular dystrophy. ENDEAVOR (SRP-9001-103; NCT04626674) is a single-arm, open-label study to evaluate delandistrogene moxeparvovec micro-dystrophin expression, safety, and functional outcomes following administration of commercial process delandistrogene moxeparvovec. METHODS: In cohort 1 of ENDEAVOR (N = 20), eligible ambulatory males, aged ≥4 to <8 years, received a single intravenous infusion of delandistrogene moxeparvovec (1.33 × 1014 vg/kg). The primary endpoint was change from baseline (CFBL) to week 12 in delandistrogene moxeparvovec micro-dystrophin by western blot. Additional endpoints evaluated included: safety; vector genome copies; CFBL to week 12 in muscle fiber-localized micro-dystrophin by immunofluorescence; and functional assessments, including North Star Ambulatory Assessment, with comparison with a propensity score-weighted external natural history control. RESULTS: The 1-year safety profile of commercial process delandistrogene moxeparvovec in ENDEAVOR was consistent with safety data reported in other delandistrogene moxeparvovec trials (NCT03375164 and NCT03769116). Delandistrogene moxeparvovec micro-dystrophin expression was robust, with sarcolemmal localization at week 12; mean (SD) CFBL in western blot, 54.2% (42.6); p < 0.0001. At 1 year, patients demonstrated stabilized or improved North Star Ambulatory Assessment total scores; mean (SD) CFBL, +4.0 (3.5). Treatment versus a propensity score-weighted external natural history control demonstrated a statistically significant difference in least squares mean (standard error) CFBL in North Star Ambulatory Assessment, +3.2 (0.6) points; p < 0.0001. INTERPRETATION: Results confirm efficient transduction of muscle by delandistrogene moxeparvovec. One-year post-treatment, delandistrogene moxeparvovec was well tolerated, and demonstrated stabilized or improved motor function, suggesting a clinical benefit for patients with Duchenne muscular dystrophy. ANN NEUROL 2023;94:955-968.


Subject(s)
Muscular Dystrophy, Duchenne , Male , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , Genetic Therapy/methods , Infusions, Intravenous , Muscle Fibers, Skeletal
4.
Clin Adv Hematol Oncol ; 22(2): 67-75, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38446474

ABSTRACT

Kirsten rat sarcoma virus (KRAS) is the most frequently mutated oncogene in human cancers, particularly in non-small cell lung cancer (NSCLC), where mutations are present in 32% of lung adenocarcinoma and 4% of squamous cell lung cancer. The most common KRAS variant is KRAS G12C, which accounts for nearly 40% of all KRAS mutations. Although it is the most common oncogenic driver in NSCLC, KRAS was considered a "nondruggable target" until recently, owing to the lack of any progress in developing targeted therapies for this oncogene. With the recent development and approval of selective KRAS G12C inhibitors such as sotorasib and adagrasib for the treatment of advanced or metastatic NSCLC in the second-line setting and beyond, the standard of care for managing these tumors has undergone a significant change. Mechanisms of resistance to KRAS G12C inhibitors are highly heterogeneous, including both on-target and off-target resistance as well as morphologic switching, thus limiting the activity of these drugs when used as monotherapy. New-generation inhibitors and different combination strategies are being developed in early-phase trials to overcome or delay the onset of resistance as well as to target non-G12C mutations. Owing to the biological heterogeneity of KRAS-mutant NSCLC, treatment will likely need to be individualized based on factors such as co-occurring mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Oncogenes
5.
Curr Oncol Rep ; 25(1): 19-28, 2023 01.
Article in English | MEDLINE | ID: mdl-36441447

ABSTRACT

PURPOSE OF REVIEW: Oncolytic viruses (OVs) exert their antitumor effect through selective killing of cancer cells and induction of host anti-tumor immunity. This review aims to summarize the recent and current trials with OVs for the treatment of lung cancer. RECENT FINDINGS: Several OVs have been developed for the treatment of lung cancer including adenovirus, coxsackievirus B3, reovirus, and vaccinia virus and trials have demonstrated a safe toxicity profile. Early-phase trials in lung cancer with OVs have reported antiviral immune responses and evidence of clinical benefit. However, clinical efficacy of OVs in lung cancer either as monotherapy or in combination with chemotherapy has not been confirmed in larger phase II or III trials. Development of OVs in lung cancer has been limited by difficulty in administering OVs in the tumor directly as well as achieving adequate viral load at all tumor sites with systemically administered OVs. Developing novel combinations with OVs, especially checkpoint inhibitors and other immunotherapeutics, may be a strategy to address the limited success seen thus far. Integrating appropriate biomarker studies and meaningful endpoints in future clinical trials will be imperative. Using novel viral delivery systems in addition to increasing tumor specificity through improved genetic modifications in the OVs are other strategies to improve efficacy.


Subject(s)
Lung Neoplasms , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/genetics , Neoplasms/therapy , Immunotherapy , Treatment Outcome , Lung Neoplasms/therapy
6.
Mol Ther ; 30(12): 3542-3551, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36242517

ABSTRACT

Hemophilia A gene therapy targets hepatocytes to express B domain deleted (BDD) clotting factor VIII (FVIII) to permit viral encapsidation. Since BDD is prone to misfolding in the endoplasmic reticulum (ER) and ER protein misfolding in hepatocytes followed by high-fat diet (HFD) can cause hepatocellular carcinoma (HCC), we studied how FVIII misfolding impacts HCC development using hepatocyte DNA delivery to express three proteins from the same parental vector: (1) well-folded cytosolic dihydrofolate reductase (DHFR); (2) BDD-FVIII, which is prone to misfolding in the ER; and (3) N6-FVIII, which folds more efficiently than BDD-FVIII. One week after DNA delivery, when FVIII expression was undetectable, mice were fed HFD for 65 weeks. Remarkably, all mice that received BDD-FVIII vector developed liver tumors, whereas only 58% of mice that received N6 and no mice that received DHFR vector developed liver tumors, suggesting that the degree of protein misfolding in the ER increases predisposition to HCC in the context of an HFD and in the absence of viral transduction. Our findings raise concerns of ectopic BDD-FVIII expression in hepatocytes in the clinic, which poses risks independent of viral vector integration. Limited expression per hepatocyte and/or use of proteins that avoid misfolding may enhance safety.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Hepatocytes , DNA , Blood Coagulation Factors
7.
Proc Natl Acad Sci U S A ; 117(2): 1119-1128, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31888983

ABSTRACT

Reprogramming the tumor microenvironment to increase immune-mediated responses is currently of intense interest. Patients with immune-infiltrated "hot" tumors demonstrate higher treatment response rates and improved survival. However, only the minority of tumors are hot, and a limited proportion of patients benefit from immunotherapies. Innovative approaches that make tumors hot can have immediate impact particularly if they repurpose drugs with additional cancer-unrelated benefits. The seasonal influenza vaccine is recommended for all persons over 6 mo without prohibitive contraindications, including most cancer patients. Here, we report that unadjuvanted seasonal influenza vaccination via intratumoral, but not intramuscular, injection converts "cold" tumors to hot, generates systemic CD8+ T cell-mediated antitumor immunity, and sensitizes resistant tumors to checkpoint blockade. Importantly, intratumoral vaccination also provides protection against subsequent active influenza virus lung infection. Surprisingly, a squalene-based adjuvanted vaccine maintains intratumoral regulatory B cells and fails to improve antitumor responses, even while protecting against active influenza virus lung infection. Adjuvant removal, B cell depletion, or IL-10 blockade recovers its antitumor effectiveness. Our findings propose that antipathogen vaccines may be utilized for both infection prevention and repurposing as a cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Injections, Intralesional , Neoplasms/drug therapy , Neoplasms/immunology , Adjuvants, Immunologic/administration & dosage , Animals , B-Lymphocytes , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Immunity, Cellular , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human , Interleukin-10 , Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Repressor Proteins/genetics , Seasons , Skin , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Squalene/administration & dosage , Tumor Microenvironment/drug effects , Vaccination
8.
J Asthma ; 59(4): 780-786, 2022 04.
Article in English | MEDLINE | ID: mdl-33577360

ABSTRACT

OBJECTIVE: Several therapeutic agents have been assessed for the treatment of COVID-19, but few approaches have been proven efficacious. Because leukotriene receptor antagonists, such as montelukast have been shown to reduce both cytokine release and lung inflammation in preclinical models of viral influenza and acute respiratory distress syndrome, we hypothesized that therapy with montelukast could be used to treat COVID-19. The objective of this study was to determine if montelukast treatment would reduce the rate of clinical deterioration as measured by the COVID-19 Ordinal Scale. METHODS: We performed a retrospective analysis of COVID-19 confirmed hospitalized patients treated with or without montelukast. We used "clinical deterioration" as the primary endpoint, a binary outcome defined as any increase in the Ordinal Scale value from Day 1 to Day 3 of the hospital stay, as these data were uniformly available for all admitted patients before hospital discharge. Rates of clinical deterioration between the montelukast and non-montelukast groups were compared using the Fisher's exact test. Univariate logistic regression was also used to assess the association between montelukast use and clinical deterioration. A total of 92 patients were analyzed, 30 who received montelukast at the discretion of the treating physician and 62 patients who did not receive montelukast. RESULTS: Patients receiving montelukast experienced significantly fewer events of clinical deterioration compared with patients not receiving montelukast (10% vs 32%, p = 0.022). Our findings suggest that montelukast associates with a reduction in clinical deterioration for COVID-19 confirmed patients as measured on the COVID-19 Ordinal Scale. CONCLUSIONS: Hospitalized COVID-19 patients treated with montelukast had fewer events of clinical deterioration, indicating that this treatment may have clinical activity. While this retrospective study highlights a potential pathway for COVID-19 treatment, this hypothesis requires further study by prospective studies.


Subject(s)
Asthma , COVID-19 Drug Treatment , Clinical Deterioration , Quinolines , Acetates/therapeutic use , Asthma/drug therapy , Cyclopropanes , Humans , Leukotriene Antagonists/therapeutic use , Prospective Studies , Quinolines/therapeutic use , Retrospective Studies , SARS-CoV-2 , Sulfides , Treatment Outcome
9.
Pharmacoepidemiol Drug Saf ; 30(12): 1624-1629, 2021 12.
Article in English | MEDLINE | ID: mdl-34378828

ABSTRACT

PURPOSE: Non-infectious pneumonitis (NIP) is a common complication of treatments for lung cancer. We know of no existing validated algorithm for identifying NIP in claims databases, limiting our ability to understand the morbidity and mortality of this toxicity in real-world data. METHODS: Electronic health records (EHR), cancer registry, and administrative data from a National Cancer Institute-designated comprehensive cancer center were queried for patients diagnosed with lung cancer between 10/01/2015-12/31/2020. Health insurance claims were searched for ICD-10-CM codes that indicate an inpatient or outpatient diagnosis with possible NIP. A 20-code (Algorithm A) and 11-code (Algorithm B) algorithm were tested with and without requiring prescription with corticosteroids. Cases with a diagnosis of possible NIP in the 6 months before their first lung cancer diagnosis were excluded. The algorithms were validated by reviewing the EHR. The positive predictive value (PPV) for each algorithm was computed with 95% confidence intervals (CI). RESULTS: Seventy patients with lung cancer had a diagnosis code compatible with NIP: 36 (51.4%) inpatients and 34 (48.6%) outpatients. The PPV of Algorithm A was 77.1% (95% CI: 65.6-86.3). The PPV of Algorithm B was 86.9% (95% CI: 75.8-94.2). Requiring a documented prescription for a systemic corticosteroid improved the PPV of both Algorithm A and Algorithm B: 92.5% (95% CI: 79.6-98.4) and 100.0% (95% CI: 90.0-100.0), respectively. CONCLUSIONS: This study validated ICD-10-CM and prescription-claims-based definitions of NIP in lung cancer patients. All algorithms have at least reasonable performance. Enriching the algorithm with corticosteroid prescription records results in excellent performance.


Subject(s)
Lung Neoplasms , Pneumonia , Algorithms , Databases, Factual , Humans , International Classification of Diseases , Lung Neoplasms/complications , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Pneumonia/diagnosis , Pneumonia/epidemiology
11.
J Neurooncol ; 136(2): 395-401, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29159778

ABSTRACT

There is limited available literature examining factors that predispose patients to the development of LMC after stereotactic radiosurgery (SRS) for brain metastases. We sought to evaluate risk factors that may predispose patients to LMC after SRS treatment in this case-control study of patients with brain metastases who underwent single-fraction SRS between 2011 and 2016. Demographic and clinical information were collected retrospectively for 19 LMC cases and 30 controls out of 413 screened patients with brain metastases. Risk factors of interest were evaluated by univariate and multivariate logistic regression analyses and overall survival rates were evaluated by Kaplan-Meier survival analysis. About 5% of patients with brain metastases treated with SRS developed LMC. Patients with LMC (median 154 days, 95% CI 33-203 days) demonstrated a poorer overall survival than matched controls (median 417 days, 95% CI 121-512 days, p = 0.002). The most common primary tumor histologies  that lead to the development of LMC were non-small cell lung cancer (36.8%), breast cancer (26.3%), and melanoma (21.1%). No association was found between the risk of LMC and the location of the brain lesion or total volume of brain metastases. Prior surgical resection of brain metastases before SRS was associated with a 6.5 times higher odds (95% CI 1.45-29.35, p = 0.01) of developing LMC post-radiosurgery compared to those with no prior resections of brain metastases. Additionally, adjuvant WBRT may help to reduce the risk of LMC and can be considered in decision-making for patients who have had brain metastasectomy.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Meningeal Carcinomatosis/etiology , Radiosurgery , Brain Neoplasms/secondary , Case-Control Studies , Craniotomy , Female , Humans , Kaplan-Meier Estimate , Male , Meningeal Carcinomatosis/epidemiology , Middle Aged , Retrospective Studies , Risk Factors , Treatment Outcome
12.
Bioorg Med Chem Lett ; 28(15): 2655-2659, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29935771

ABSTRACT

Mitophagy is one of the processes that cells use to maintain overall health. An E3 ligase, parkin, ubiquitinates mitochondrial proteins prior to their degradation by autophagasomes. USP30 is an enzyme that de-ubiquitinates mitochondrial proteins; therefore, inhibiting this enzyme could foster mitophagy. Herein, we disclose the structure-activity relationships (SAR) within a novel series of highly selective USP30 inhibitors. Two structurally similar compounds, MF-094 (a potent and selective USP30 inhibitor) and MF-095 (a significantly less potent USP30 inhibitor), serve as useful controls for biological evaluation. We show that MF-094 increases protein ubiquitination and accelerates mitophagy.


Subject(s)
Mitochondrial Proteins/antagonists & inhibitors , Mitophagy/drug effects , Protease Inhibitors/pharmacology , Thiolester Hydrolases/antagonists & inhibitors , Animals , Mice , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protease Inhibitors/chemistry , Structure-Activity Relationship , Thiolester Hydrolases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
13.
Hum Mol Genet ; 24(25): 7406-20, 2015 Dec 20.
Article in English | MEDLINE | ID: mdl-26483192

ABSTRACT

Results from genome-wide association studies (GWAS) have indicated that strong single-gene effects are the exception, not the rule, for most diseases. We assessed the joint effects of germline genetic variations through a pathway-based approach that considers the tissue-specific contexts of GWAS findings. From GWAS meta-analyses of lung cancer (12 160 cases/16 838 controls), breast cancer (15 748 cases/18 084 controls) and prostate cancer (14 160 cases/12 724 controls) in individuals of European ancestry, we determined the tissue-specific interaction networks of proteins expressed from genes that are likely to be affected by disease-associated variants. Reactome pathways exhibiting enrichment of proteins from each network were compared across the cancers. Our results show that pathways associated with all three cancers tend to be broad cellular processes required for growth and survival. Significant examples include the nerve growth factor (P = 7.86 × 10(-33)), epidermal growth factor (P = 1.18 × 10(-31)) and fibroblast growth factor (P = 2.47 × 10(-31)) signaling pathways. However, within these shared pathways, the genes that influence risk largely differ by cancer. Pathways found to be unique for a single cancer focus on more specific cellular functions, such as interleukin signaling in lung cancer (P = 1.69 × 10(-15)), apoptosis initiation by Bad in breast cancer (P = 3.14 × 10(-9)) and cellular responses to hypoxia in prostate cancer (P = 2.14 × 10(-9)). We present the largest comparative cross-cancer pathway analysis of GWAS to date. Our approach can also be applied to the study of inherited mechanisms underlying risk across multiple diseases in general.


Subject(s)
Genome-Wide Association Study/methods , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Genetic Variation/genetics , Humans , Lung Neoplasms/genetics , Male , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/genetics
14.
Br J Cancer ; 115(9): 1131-1139, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27632373

ABSTRACT

BACKGROUND: Lung cancer in never smokers is a significant contributor of cancer mortality worldwide. In this analysis, we explored the role of nine human polyomaviruses, including JC virus (JCV), BK virus (BKV) and Merkel cell virus (MCV), in lung cancer development in never smokers as there are data to support that polyomaviruses are potentially carcinogenic in the human lung. METHODS: We used multiplex serology to detect serum antibodies to polyomaviruses in a nested case-control design combining lung cancer cases and controls from four cohort studies - NYU Women's Health Study (NYU-WHS), Janus Serum Bank, Shanghai Women's Health Study and Singapore Chinese Health Study (SCHS). RESULTS: The final analyses included 511 cases and 508 controls. Seroprevalence for each polyomavirus showed significant heterogeneity by study, but overall there were no statistically significant differences between cases and controls. In total, 69.1% of the cases and 68.7% of the controls were seropositive for JCV VP1 antibody. Seropositivity for BKV was higher at 89.0% in cases and 89.8% in controls and lower for MCV at 59.3% in cases and 61.6% in controls. Similar results were obtained after adding an additional retrospective case-control study (Xuanwei study) to the analysis. CONCLUSIONS: Our results do not support the hypothesis that seropositivity for polyomaviruses is associated with increased lung cancer risk in never smokers. Future research to evaluate relationship between polyomavirus infection and lung carcinogenesis should focus more on evaluating the presence of virus or viral nucleic acids (DNA or RNA) in lung tumour samples.


Subject(s)
Biomarkers/blood , Lung Neoplasms/blood , Lung Neoplasms/epidemiology , Polyomavirus Infections/blood , Aged , Case-Control Studies , Female , Humans , Lung Neoplasms/virology , Male , Middle Aged , Polyomavirus Infections/diagnosis , Polyomavirus Infections/epidemiology , Retrospective Studies , Risk Factors , Seroepidemiologic Studies , Tumor Virus Infections/blood , Tumor Virus Infections/epidemiology
15.
Eur Respir J ; 48(3): 889-902, 2016 09.
Article in English | MEDLINE | ID: mdl-27174888

ABSTRACT

Lung cancer is the most frequent malignant neoplasm in most countries, and the main cancer-related cause of mortality worldwide in both sexes combined.The geographic and temporal patterns of lung cancer incidence, as well as lung cancer mortality, on a population level are chiefly determined by tobacco consumption, the main aetiological factor in lung carcinogenesis.Other factors such as genetic susceptibility, poor diet, occupational exposures and air pollution may act independently or in concert with tobacco smoking in shaping the descriptive epidemiology of lung cancer. Moreover, novel approaches in the classification of lung cancer based on molecular techniques have started to bring new insights to its aetiology, in particular among nonsmokers. Despite the success in delineation of tobacco smoking as the major risk factor for lung cancer, this highly preventable disease remains among the most common and most lethal cancers globally.Future preventive efforts and research need to focus on non-cigarette tobacco smoking products, as well as better understanding of risk factors underlying lung carcinogenesis in never-smokers.


Subject(s)
Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Occupational Exposure/adverse effects , Risk Factors , Smoking/adverse effects , Alcohol Drinking , Diet , Female , Genetic Predisposition to Disease , Humans , Incidence , Inflammation , Male , Polymorphism, Genetic , Nicotiana
16.
Biochim Biophys Acta ; 1843(10): 2233-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24690484

ABSTRACT

Calcium homeostasis is central to all cellular functions and has been studied for decades. Calcium acts as a critical second messenger for both extracellular and intracellular signaling and is fundamental in cell life and death decisions (Berridge et al., 2000) [1]. The calcium gradient in the cell is coupled with an inherent ability of the divalent cation to reversibly bind multiple target biological molecules to generate an extremely versatile signaling system [2]. Calcium signals are used by the cell to control diverse processes such as development, neurotransmitter release, muscle contraction, metabolism, autophagy and cell death. "Cellular calcium overload" is detrimental to cellular health, resulting in massive activation of proteases and phospholipases leading to cell death (Pinton et al., 2008) [3]. Historically, cell death associated with calcium ion perturbations has been primarily recognized as necrosis. Recent evidence clearly associates changes in calcium ion concentrations with more sophisticated forms of cellular demise, including apoptosis (Kruman et al., 1998; Tombal et al., 1999; Lynch et al., 2000; Orrenius et al., 2003) [4-7]. Although the endoplasmic reticulum (ER) serves as the primary calcium store in the metazoan cell, dynamic calcium release to the cytosol, mitochondria, nuclei and other organelles orchestrate diverse coordinated responses. Most evidence supports that calcium transport from the ER to mitochondria plays a significant role in regulating cellular bioenergetics, production of reactive oxygen species, induction of autophagy and apoptosis. Recently, molecular identities that mediate calcium traffic between the ER and mitochondria have been discovered (Mallilankaraman et al., 2012a; Mallilankaraman et al., 2012b; Sancak et al., 2013)[8-10]. The next questions are how they are regulated for exquisite tight control of ER-mitochondrial calcium dynamics. This review attempts to summarize recent advances in the role of calcium in regulation of ER and mitochondrial function. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Subject(s)
Calcium Signaling , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Energy Metabolism , Mitochondria/metabolism , Animals , Cell Death , Gene Expression , Humans , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Protein Transport
17.
EMBO J ; 30(7): 1357-75, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21407177

ABSTRACT

The endoplasmic reticulum (ER) is the cellular organelle responsible for protein folding and assembly, lipid and sterol biosynthesis, and calcium storage. The unfolded protein response (UPR) is an adaptive intracellular stress response to accumulation of unfolded or misfolded proteins in the ER. In this study, we show that the most conserved UPR sensor inositol-requiring enzyme 1 α (IRE1α), an ER transmembrane protein kinase/endoribonuclease, is required to maintain hepatic lipid homeostasis under ER stress conditions through repressing hepatic lipid accumulation and maintaining lipoprotein secretion. To elucidate physiological roles of IRE1α-mediated signalling in the liver, we generated hepatocyte-specific Ire1α-null mice by utilizing an albumin promoter-controlled Cre recombinase-mediated deletion. Deletion of Ire1α caused defective induction of genes encoding functions in ER-to-Golgi protein transport, oxidative protein folding, and ER-associated degradation (ERAD) of misfolded proteins, and led to selective induction of pro-apoptotic UPR trans-activators. We show that IRE1α is required to maintain the secretion efficiency of selective proteins. In the absence of ER stress, mice with hepatocyte-specific Ire1α deletion displayed modest hepatosteatosis that became profound after induction of ER stress. Further investigation revealed that IRE1α represses expression of key metabolic transcriptional regulators, including CCAAT/enhancer-binding protein (C/EBP) ß, C/EBPδ, peroxisome proliferator-activated receptor γ (PPARγ), and enzymes involved in triglyceride biosynthesis. IRE1α was also found to be required for efficient secretion of apolipoproteins upon disruption of ER homeostasis. Consistent with a role for IRE1α in preventing intracellular lipid accumulation, mice with hepatocyte-specific deletion of Ire1α developed severe hepatic steatosis after treatment with an ER stress-inducing anti-cancer drug Bortezomib, upon expression of a misfolding-prone human blood clotting factor VIII, or after partial hepatectomy. The identification of IRE1α as a key regulator to prevent hepatic steatosis provides novel insights into ER stress mechanisms in fatty liver diseases associated with toxic liver injuries.


Subject(s)
Endoplasmic Reticulum/metabolism , Endoribonucleases/metabolism , Fatty Liver/prevention & control , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , Animals , Gene Expression Profiling , Mice , Mice, Knockout
18.
Chem Res Toxicol ; 28(9): 1661-5, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26178266

ABSTRACT

Alcohol is a major risk factor for cancers of the upper aerodigestive tract (UADT) including oral, pharyngeal, laryngeal, and esophageal cancers. Our present study aims at comparing the effect of alcohol consumption trends on UADT cancer incidence and mortality in four countries: USA, France, Sweden, and UK (Scotland). Analogous to the decline in alcohol consumption in the countries being studied, incidence and mortality rates for UADT cancers were also noted to stabilize or decline over time. Factors such as tobacco use and HPV infection may have confounded our findings.


Subject(s)
Ethanol/adverse effects , Head and Neck Neoplasms/chemically induced , Alcohol Drinking , France/epidemiology , Head and Neck Neoplasms/epidemiology , Head and Neck Neoplasms/mortality , Humans , Incidence , Risk Factors , Scotland/epidemiology , Sweden/epidemiology , United States/epidemiology
19.
Am J Hematol ; 89(6): 616-20, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24616227

ABSTRACT

The prognostic impact of amplification of chromosome 1(C1A) in newly diagnosed multiple myeloma (nMM) patients treated with the most commonly used bortezomib-based triplet regimens is unclear. In this study, we analyzed the outcome of novel triplet therapies in a series of unselected patients with C1A detected by FISH. We identified 28 unselected nMM patients with C1A who had a gain of 1q21 locus. Despite 50% of patients being diagnosed at ISS stage 1 or 2 and 93% having no other high-risk molecular findings, the median overall survival of all patients was only 37 months, with 8 deaths (29%) occurring 8-37 months after diagnosis. Those who died had a median of four lines (range was 1-8) of therapy. Moreover, 71% of patients were non-Caucasian. Extra-osseous and CNS involvement occurred in 36 and 11% of patients respectively. Gain of the long arm of chromosome 1 detected by FISH remains a high-risk prognostic marker even in the setting of novel triplet therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromosomes, Human, Pair 1 , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Aged , Chromosome Aberrations , Disease-Free Survival , Female , Gene Amplification , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Multiple Myeloma/diagnosis , Ploidies , Prognosis , Retrospective Studies , Survival Analysis , Treatment Outcome
20.
Cancers (Basel) ; 16(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001539

ABSTRACT

The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL