Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33740419

ABSTRACT

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , GPI-Linked Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins/metabolism , Animals , Cell Adhesion Molecules, Neuronal/chemistry , Cell Movement , DCC Receptor/deficiency , DCC Receptor/genetics , GPI-Linked Proteins/chemistry , Growth Cones/physiology , Humans , Lateral Ventricles/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Neurons/cytology , Neurons/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction
2.
Nature ; 617(7962): 764-768, 2023 05.
Article in English | MEDLINE | ID: mdl-37198478

ABSTRACT

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Subject(s)
COVID-19 , Critical Illness , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genotype , Genotyping Techniques , Monocytes/metabolism , Phenotype , rab GTP-Binding Proteins/genetics , Transcriptome , Whole Genome Sequencing
3.
Nature ; 604(7904): 190-194, 2022 04.
Article in English | MEDLINE | ID: mdl-35355020

ABSTRACT

Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, ß3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.


Subject(s)
Benzodiazepines , Receptors, GABA-A , Signal Transduction , Benzodiazepines/pharmacology , Binding Sites , Cryoelectron Microscopy , Histamine/metabolism , Humans , Ligands , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA-Seq , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Receptors, GABA-A/ultrastructure , Single-Cell Analysis , gamma-Aminobutyric Acid/metabolism
4.
Nature ; 607(7917): 97-103, 2022 07.
Article in English | MEDLINE | ID: mdl-35255492

ABSTRACT

Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.


Subject(s)
COVID-19 , Critical Illness , Genome, Human , Host-Pathogen Interactions , Whole Genome Sequencing , ATP-Binding Cassette Transporters , COVID-19/genetics , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Cell Adhesion Molecules , Critical Care , Critical Illness/mortality , E-Selectin , Factor VIII , Fucosyltransferases , Genome, Human/genetics , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Humans , Interleukin-10 Receptor beta Subunit , Lectins, C-Type , Mucin-1 , Nerve Tissue Proteins , Phospholipid Transfer Proteins , Receptors, Cell Surface , Repressor Proteins , SARS-CoV-2/pathogenicity , Galactoside 2-alpha-L-fucosyltransferase
5.
Nature ; 585(7823): 85-90, 2020 09.
Article in English | MEDLINE | ID: mdl-32699409

ABSTRACT

A relatively small number of proteins have been suggested to act as morphogens-signalling molecules that spread within tissues to organize tissue repair and the specification of cell fate during development. Among them are Wnt proteins, which carry a palmitoleate moiety that is essential for signalling activity1-3. How a hydrophobic lipoprotein can spread in the aqueous extracellular space is unknown. Several mechanisms, such as those involving lipoprotein particles, exosomes or a specific chaperone, have been proposed to overcome this so-called Wnt solubility problem4-6. Here we provide evidence against these models and show that the Wnt lipid is shielded by the core domain of a subclass of glypicans defined by the Dally-like protein (Dlp). Structural analysis shows that, in the presence of palmitoleoylated peptides, these glypicans change conformation to create a hydrophobic space. Thus, glypicans of the Dlp family protect the lipid of Wnt proteins from the aqueous environment and serve as a reservoir from which Wnt proteins can be handed over to signalling receptors.


Subject(s)
Glypicans/chemistry , Glypicans/metabolism , Lipids , Signal Transduction , Wnt Proteins/chemistry , Wnt Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Female , Glypicans/classification , Humans , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Male , Models, Molecular , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding/genetics , Protein Domains , Protein Transport , Solubility , Wnt1 Protein/chemistry , Wnt1 Protein/metabolism
6.
Nature ; 587(7832): 152-156, 2020 11.
Article in English | MEDLINE | ID: mdl-33087931

ABSTRACT

The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the ß3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.


Subject(s)
Apoferritins/chemistry , Apoferritins/ultrastructure , Cryoelectron Microscopy/instrumentation , Cryoelectron Microscopy/methods , Receptors, GABA-A/chemistry , Receptors, GABA-A/ultrastructure , Single Molecule Imaging/methods , Animals , Cryoelectron Microscopy/standards , Drug Discovery , Humans , Mice , Models, Molecular , Polysaccharides/chemistry , Polysaccharides/ultrastructure , Single Molecule Imaging/standards
7.
Nature ; 565(7740): 516-520, 2019 01.
Article in English | MEDLINE | ID: mdl-30602789

ABSTRACT

Type A γ-aminobutyric acid (GABAA) receptors are pentameric ligand-gated ion channels and the main drivers of fast inhibitory neurotransmission in the vertebrate nervous system1,2. Their dysfunction is implicated in a range of neurological disorders, including depression, epilepsy and schizophrenia3,4. Among the numerous assemblies that are theoretically possible, the most prevalent in the brain are the α1ß2/3γ2 GABAA receptors5. The ß3 subunit has an important role in maintaining inhibitory tone, and the expression of this subunit alone is sufficient to rescue inhibitory synaptic transmission in ß1-ß3 triple knockout neurons6. So far, efforts to generate accurate structural models for heteromeric GABAA receptors have been hampered by the use of engineered receptors and the presence of detergents7-9. Notably, some recent cryo-electron microscopy reconstructions have reported 'collapsed' conformations8,9; however, these disagree with the structure of the prototypical pentameric ligand-gated ion channel the Torpedo nicotinic acetylcholine receptor10,11, the large body of structural work on homologous homopentameric receptor variants12 and the logic of an ion-channel architecture. Here we present a high-resolution cryo-electron microscopy structure of the full-length human α1ß3γ2L-a major synaptic GABAA receptor isoform-that is functionally reconstituted in lipid nanodiscs. The receptor is bound to a positive allosteric modulator 'megabody' and is in a desensitized conformation. Each GABAA receptor pentamer contains two phosphatidylinositol-4,5-bisphosphate molecules, the head groups of which occupy positively charged pockets in the intracellular juxtamembrane regions of α1 subunits. Beyond this level, the intracellular M3-M4 loops are largely disordered, possibly because interacting post-synaptic proteins are not present. This structure illustrates the molecular principles of heteromeric GABAA receptor organization and provides a reference framework for future mechanistic investigations of GABAergic signalling and pharmacology.


Subject(s)
Cryoelectron Microscopy , Lipid Bilayers/chemistry , Receptors, GABA-A/chemistry , Receptors, GABA-A/ultrastructure , Allosteric Regulation , Amino Acid Sequence , Binding Sites , Electric Conductivity , Humans , Models, Molecular , Molecular Docking Simulation , Nanostructures/chemistry , Nanostructures/ultrastructure , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Protein Structure, Quaternary , Receptors, GABA-A/metabolism
8.
Nature ; 566(7744): E8, 2019 02.
Article in English | MEDLINE | ID: mdl-30733619

ABSTRACT

In Fig. 5b, d, the arrows showing transmembrane domain rotations were inadvertently pointing clockwise instead of anticlockwise. Similarly, 'anticlockwise' should have been 'clockwise' in the sentence 'This conformational change of the ECD triggers a clockwise rotation of the TMD.' In Extended Data Table 1, the units of the column 'Model resolution' should have been Å instead of Å2. These errors have been corrected online.

9.
Nature ; 565(7740): 454-459, 2019 01.
Article in English | MEDLINE | ID: mdl-30602790

ABSTRACT

Type-A γ-aminobutyric (GABAA) receptors are ligand-gated chloride channels with a very rich pharmacology. Some of their modulators, including benzodiazepines and general anaesthetics, are among the most successful drugs in clinical use and are common substances of abuse. Without reliable structural data, the mechanistic basis for the pharmacological modulation of GABAA receptors remains largely unknown. Here we report several high-resolution cryo-electron microscopy structures in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam. We describe the binding modes and mechanistic effects of these ligands, the closed and desensitized states of the GABAA receptor gating cycle, and the basis for allosteric coupling between the extracellular, agonist-binding region and the transmembrane, pore-forming region. This work provides a structural framework in which to integrate previous physiology and pharmacology research and a rational basis for the development of GABAA receptor modulators.


Subject(s)
Alprazolam/chemistry , Bicuculline/chemistry , Cryoelectron Microscopy , Diazepam/chemistry , Picrotoxin/chemistry , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Signal Transduction/drug effects , Allosteric Regulation/drug effects , Alprazolam/pharmacology , Benzodiazepines/chemistry , Benzodiazepines/pharmacology , Bicuculline/pharmacology , Binding, Competitive/drug effects , Diazepam/pharmacology , GABA Modulators/chemistry , GABA Modulators/pharmacology , Humans , Ligands , Models, Molecular , Nanostructures/chemistry , Picrotoxin/pharmacology
12.
PLoS Pathog ; 17(12): e1010118, 2021 12.
Article in English | MEDLINE | ID: mdl-34860860

ABSTRACT

Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity in targeting phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or ß2-glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. aPL production is thought to be triggered by-among other factors-viral infections, though infection-associated aPL have mostly been considered non-pathogenic. Recently, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that selected non-criteria aPL were enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effects models suggest an association of aPL with prothrombin (PT). The strength of the antibody response against SARS-CoV-2 was further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity, and aPL against PT in patients with SARS-CoV-2.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/immunology , Prothrombin/immunology , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/immunology , Cell Communication/immunology , Humans , Risk Factors , Severity of Illness Index
13.
Proc Natl Acad Sci U S A ; 117(27): 15620-15631, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32576689

ABSTRACT

Repulsive guidance molecules (RGMs) are cell surface proteins that regulate the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. They control fundamental biological processes, such as migration and differentiation by direct interaction with the Neogenin (NEO1) receptor and function as coreceptors for the bone morphogenetic protein (BMP)/growth differentiation factor (GDF) family. We determined crystal structures of all three human RGM family members in complex with GDF5, as well as the ternary NEO1-RGMB-GDF5 assembly. Surprisingly, we show that all three RGMs inhibit GDF5 signaling, which is in stark contrast to RGM-mediated enhancement of signaling observed for other BMPs, like BMP2. Despite their opposite effect on GDF5 signaling, RGMs occupy the BMP type 1 receptor binding site similar to the observed interactions in RGM-BMP2 complexes. In the NEO1-RGMB-GDF5 complex, RGMB physically bridges NEO1 and GDF5, suggesting cross-talk between the GDF5 and NEO1 signaling pathways. Our crystal structures, combined with structure-guided mutagenesis of RGMs and BMP ligands, binding studies, and cellular assays suggest that RGMs inhibit GDF5 signaling by competing with GDF5 type 1 receptors. While our crystal structure analysis and in vitro binding data initially pointed towards a simple competition mechanism between RGMs and type 1 receptors as a possible basis for RGM-mediated GDF5 inhibition, further experiments utilizing BMP2-mimicking GDF5 variants clearly indicate a more complex mechanism that explains how RGMs can act as a functionality-changing switch for two structurally and biochemically similar signaling molecules.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , GPI-Linked Proteins/metabolism , Growth Differentiation Factor 5/metabolism , Hemochromatosis Protein/metabolism , Nerve Tissue Proteins/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/ultrastructure , Cell Adhesion Molecules, Neuronal/ultrastructure , Crystallography, X-Ray , GPI-Linked Proteins/ultrastructure , Growth Differentiation Factor 5/ultrastructure , Hemochromatosis Protein/ultrastructure , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Nerve Tissue Proteins/ultrastructure , Protein Domains , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Signal Transduction
14.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34213308

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
15.
Nat Chem Biol ; 15(10): 975-982, 2019 10.
Article in English | MEDLINE | ID: mdl-31548691

ABSTRACT

Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling. Molecular dynamics simulations show that this interaction leads to the closure of a tunnel through PTCH1 that serves as the putative conduit for sterol transport. Thus, Shh inactivates PTCH1 by grasping its extracellular domain with two lipidic pincers, the N-terminal palmitate and the C-terminal cholesterol, which are both inserted into the PTCH1 protein core.


Subject(s)
Hedgehog Proteins/metabolism , Patched-1 Receptor/metabolism , Animals , Cholesterol/chemistry , Gene Expression Regulation , HEK293 Cells , Hedgehog Proteins/chemistry , Hedgehog Proteins/genetics , Humans , Mice , Models, Molecular , NIH 3T3 Cells , Patched-1 Receptor/chemistry , Protein Binding , Protein Conformation , Single-Domain Antibodies
16.
Hum Mol Genet ; 27(21): 3720-3733, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30052933

ABSTRACT

The calcium-sensing receptor (CaSR) is a homodimeric G-protein-coupled receptor that signals via intracellular calcium (Ca2+i) mobilisation and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) to regulate extracellular calcium (Ca2+e) homeostasis. The central importance of the CaSR in Ca2+e homeostasis has been demonstrated by the identification of loss- or gain-of-function CaSR mutations that lead to familial hypocalciuric hypercalcaemia (FHH) or autosomal dominant hypocalcaemia (ADH), respectively. However, the mechanisms determining whether the CaSR signals via Ca2+i or ERK have not been established, and we hypothesised that some CaSR residues, which are the site of both loss- and gain-of-function mutations, may act as molecular switches to direct signalling through these pathways. An analysis of CaSR mutations identified in >300 hypercalcaemic and hypocalcaemic probands revealed five 'disease-switch' residues (Gln27, Asn178, Ser657, Ser820 and Thr828) that are affected by FHH and ADH mutations. Functional expression studies using HEK293 cells showed disease-switch residue mutations to commonly display signalling bias. For example, two FHH-associated mutations (p.Asn178Asp and p.Ser820Ala) impaired Ca2+i signalling without altering ERK phosphorylation. In contrast, an ADH-associated p.Ser657Cys mutation uncoupled signalling by leading to increased Ca2+i mobilization while decreasing ERK phosphorylation. Structural analysis of these five CaSR disease-switch residues together with four reported disease-switch residues revealed these residues to be located at conformationally active regions of the CaSR such as the extracellular dimer interface and transmembrane domain. Thus, our findings indicate that disease-switch residues are located at sites critical for CaSR activation and play a role in mediating signalling bias.


Subject(s)
Gain of Function Mutation , Hypercalciuria/genetics , Hypocalcemia/genetics , Hypoparathyroidism/congenital , Loss of Function Mutation , Receptors, Calcium-Sensing/genetics , Signal Transduction , Amino Acid Sequence , Calcium Signaling , DNA Mutational Analysis , HEK293 Cells , Humans , Hypercalciuria/metabolism , Hypocalcemia/metabolism , Hypoparathyroidism/genetics , Hypoparathyroidism/metabolism , Protein Conformation , Receptors, Calcium-Sensing/metabolism , Sequence Alignment
17.
Proc Natl Acad Sci U S A ; 110(41): 16420-5, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24062467

ABSTRACT

Hedgehog (Hh) morphogens play fundamental roles during embryogenesis and adulthood, in health and disease. Multiple cell surface receptors regulate the Hh signaling pathway. Among these, the glycosaminoglycan (GAG) chains of proteoglycans shape Hh gradients and signal transduction. We have determined crystal structures of Sonic Hh complexes with two GAGs, heparin and chondroitin sulfate. The interaction determinants, confirmed by site-directed mutagenesis and binding studies, reveal a previously not identified Hh site for GAG binding, common to all Hh proteins. The majority of Hh residues forming this GAG-binding site have been previously implicated in developmental diseases. Crystal packing analysis, combined with analytical ultracentrifugation of Sonic Hh-GAG complexes, suggests a potential mechanism for GAG-dependent Hh multimerization. Taken together, these results provide a direct mechanistic explanation of the observed correlation between disease and impaired Hh gradient formation. Moreover, GAG binding partially overlaps with the site of Hh interactions with an array of protein partners including Patched, hedgehog interacting protein, and the interference hedgehog protein family, suggesting a unique mechanism of Hh signaling modulation.


Subject(s)
Glycosaminoglycans/metabolism , Hedgehog Proteins/chemistry , Hedgehog Proteins/metabolism , Models, Molecular , Protein Conformation , Proteoglycans/metabolism , Signal Transduction/physiology , Chromatography, Affinity , Escherichia coli , Glycosaminoglycans/chemistry , Humans , Mutagenesis, Site-Directed , Polymerization , Ultracentrifugation
18.
Infect Immun ; 84(3): 622-34, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26667840

ABSTRACT

The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria.


Subject(s)
Erythrocytes/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/immunology , Erythrocytes/immunology , Female , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Malaria Vaccines/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Vaccinia virus/genetics , Vaccinia virus/metabolism
19.
Clin Immunol ; 160(2): 301-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26122175

ABSTRACT

Common Variable Immunodeficiency Disorders (CVIDs) are the most prevalent cause of primary antibody failure. CVIDs are highly variable and a genetic causes have been identified in <5% of patients. Here, we performed whole genome sequencing (WGS) of 34 CVID patients (94% sporadic) and combined them with transcriptomic profiling (RNA-sequencing of B cells) from three patients and three healthy controls. We identified variants in CVID disease genes TNFRSF13B, TNFRSF13C, LRBA and NLRP12 and enrichment of variants in known and novel disease pathways. The pathways identified include B-cell receptor signalling, non-homologous end-joining, regulation of apoptosis, T cell regulation and ICOS signalling. Our data confirm the polygenic nature of CVID and suggest individual-specific aetiologies in many cases. Together our data show that WGS in combination with RNA-sequencing allows for a better understanding of CVIDs and the identification of novel disease associated pathways.


Subject(s)
B-Lymphocytes/metabolism , Common Variable Immunodeficiency/genetics , Genome/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adult , B-Cell Activation Factor Receptor/genetics , Case-Control Studies , Child , Child, Preschool , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Multifactorial Inheritance , Sequence Analysis, DNA , Sequence Analysis, RNA , Transmembrane Activator and CAML Interactor Protein/genetics , Young Adult
20.
Infect Immun ; 82(3): 1277-86, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24379295

ABSTRACT

Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application.


Subject(s)
Adenoviridae/immunology , Malaria Vaccines/immunology , Malaria, Vivax/immunology , Plasmodium berghei/immunology , Plasmodium vivax/immunology , Protozoan Proteins/genetics , Vaccinia virus/immunology , Adenoviridae/genetics , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Culicidae/immunology , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Malaria Vaccines/genetics , Malaria, Vivax/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Pan troglodytes/immunology , Pan troglodytes/virology , Plasmodium berghei/genetics , Protozoan Proteins/immunology , Vaccinia/genetics , Vaccinia/immunology , Vaccinia virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL