Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
FASEB J ; 35(6): e21586, 2021 06.
Article in English | MEDLINE | ID: mdl-33960016

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Only 10% of all cases are familial form, the remaining 90% are sporadic form with unknown genetic background. The etiology of sporadic AD is still not fully understood. Pathogenesis and pathobiology of this disease are limited due to the limited number of experimental models. We used primary culture of fibroblasts derived from patients diagnosed with sporadic form of AD for investigation of dynamic properties of mitochondria, including fission-fusion process and localization of mitochondria within the cell. We observed differences in mitochondrial network organization with decreased mitochondrial transport velocity, and a drop in the frequency of fusion-fission events. These studies show how mitochondrial dynamics adapt to the conditions of long-term mitochondrial stress that prevails in cells of sporadic form of AD.


Subject(s)
Alzheimer Disease/pathology , Fibroblasts/pathology , Mitochondria/pathology , Mitochondrial Diseases/complications , Mitochondrial Dynamics , Stress, Physiological , Aged , Aged, 80 and over , Alzheimer Disease/etiology , Case-Control Studies , Female , Humans , Male , Middle Aged
2.
Cell Physiol Biochem ; 54(2): 230-251, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32153152

ABSTRACT

BACKGROUND/AIMS: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress. For this reason, we studied the morphology and dynamics of the mitochondrial network in human bronchial epithelial cells (BEAS-2B) exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). METHODS: Cells were subjected to short (1 week) and chronic (12 weeks) exposure to a low (7.5 µg/mL) concentration of 3R4F TPM and low (7.5 µg/mL), medium (37.5 µg/mL), and high (150 µg/mL) concentrations of TPM from THS 2.2. Confocal microscopy was applied to assess cellular and mitochondrial morphology. Cytosolic Ca2+ levels, mitochondrial membrane potential and mitochondrial mass were measured with appropriate fluorescent probes on laser scanning cytometer. The levels of proteins regulating mitochondrial dynamics and biogenesis were determined by Western blot. RESULTS: In BEAS-2B cells exposed for one week to the low concentration of 3R4F TPM and the high concentration of THS 2.2 TPM we observed clear changes in cell morphology, mitochondrial network fragmentation, altered levels of mitochondrial fusion and fission proteins and decreased biogenesis markers. Also cellular proliferation was slowed down. Upon chronic exposure (12 weeks) many parameters were affected in the opposite way comparing to short exposure. We observed strong increase of NRF2 protein level, reorganization of mitochondrial network and activation of the mitochondrial biogenesis process. CONCLUSION: Comparison of the effects of TPMs from 3R4F and from THS 2.2 revealed, that similar extent of alterations in mitochondrial dynamics and biogenesis is observed at 7.5 µg/mL of 3R4F TPM and 150 µg/mL of THS 2.2 TPM. 7 days exposure to the investigated components of cigarette smoke evoke mitochondrial stress, while upon chronic, 12 weeks exposure the hallmarks of cellular adaptation to the stressor were visible. The results also suggest that mitochondrial stress signaling is involved in the process of cellular adaptation under conditions of chronic stress caused by 3R4F and high concentration of THS 2.2.


Subject(s)
Aerosols/chemistry , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Particulate Matter/toxicity , Calcium/metabolism , Cell Line , Fluorescent Dyes/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Microscopy, Confocal , Mitochondria/drug effects , Particulate Matter/chemistry , Smoke/adverse effects , Time Factors , Tobacco Products/analysis
3.
Arch Biochem Biophys ; 695: 108626, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33049291

ABSTRACT

Glycogen branching enzyme (GBE1) introduces branching points in the glycogen molecule during its synthesis. Pathogenic GBE1 gene mutations lead to glycogen storage disease type IV (GSD IV), which is characterized by excessive intracellular accumulation of abnormal, poorly branched glycogen in affected tissues and organs, mostly in the liver. Using heterozygous Gbe1 knock-out mice (Gbe1+/-), we analyzed the effects of moderate GBE1 deficiency on oxidative stress in the liver. The livers of aged Gbe1+/- mice (22 months old) had decreased GBE1 protein levels, which caused a mild decrease in the degree of glycogen branching, but did not affect the tissue glycogen content. GBE1 deficiency was accompanied by increased protein carbonylation and elevated oxidation of the glutathione pool, indicating the existence of oxidative stress. Furthermore, we have observed increased levels of glutathione peroxidase and decreased activity of respiratory complex I in Gbe1+/- livers. Our data indicate that even mild changes in the degree of glycogen branching, which did not lead to excessive glycogen accumulation, may have broader effects on cellular bioenergetics and redox homeostasis. In young animals cellular homeostatic mechanisms are able to counteract those changes, while in aged tissues the changes may lead to increased oxidative stress.


Subject(s)
Aging/metabolism , Glycogen Debranching Enzyme System/deficiency , Glycogen Storage Disease Type IV/metabolism , Liver/enzymology , Oxidative Stress , Aging/genetics , Aging/pathology , Animals , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Glycogen/genetics , Glycogen/metabolism , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/pathology , Liver/pathology , Mice , Mice, Knockout , Protein Carbonylation/genetics
4.
J Bioenerg Biomembr ; 51(4): 259-276, 2019 08.
Article in English | MEDLINE | ID: mdl-31197632

ABSTRACT

Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.


Subject(s)
Cigarette Smoking/metabolism , Mitochondria/metabolism , Nicotine , Animals , Calcium/metabolism , Cigarette Smoking/pathology , Electron Transport Chain Complex Proteins/metabolism , Humans , Mitochondria/pathology , Mitophagy/drug effects , Nicotine/adverse effects , Nicotine/pharmacokinetics , Oxidative Stress/drug effects
5.
Methods ; 109: 3-11, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27302663

ABSTRACT

At low levels, reactive oxygen species (ROS) can act as signaling molecules within cells. When ROS production greatly exceeds the capacity of endogenous antioxidant systems, or antioxidant levels are reduced, ROS levels increase further. The latter is associated with induction of oxidative stress and associated signal transduction and characterized by ROS-induced changes in cellular redox homeostasis and/or damaging effects on biomolecules (e.g. DNA, proteins and lipids). Given the complex mechanisms involved in ROS production and removal, in combination with the lack of reporter molecules that are truly specific for a particular type of ROS, quantification of (sub)cellular ROS levels is a challenging task. In this chapter we describe two strategies to measure ROS: one approach to assess general oxidant levels using the chemical reporter CM-H2DCFDA (5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate), and a second approach allowing more specific analysis of cytosolic hydrogen peroxide (H2O2) levels using protein-based sensors (HyPer and SypHer).


Subject(s)
Antioxidants/isolation & purification , Molecular Biology/methods , Oxidative Stress , Reactive Oxygen Species/isolation & purification , Antioxidants/chemistry , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Hydrogen Peroxide/chemistry , Mitochondria/metabolism , Reactive Oxygen Species/chemistry
6.
Postepy Biochem ; 62(2): 182-188, 2016.
Article in Polish | MEDLINE | ID: mdl-28132470

ABSTRACT

Mitochondria are multifunctional, dynamic organelles, which are continuously undergoing fusion and fission and are actively distributed within the cell. Mitochondria travel along microtubules together with a mitochondrial trafficking complex, formed by motor and adaptor proteins. Proper mitochondrial movements are crucial for neurons, in which mitochondria translocate in two directions. Anterograde transport is an outward movement of mitochondria from the cell body to the synapse, whereas retrograde is an inward movement away from the synapse or plasma membrane toward the cell body. This article presents a summary of current knowledge about the intracellular transport of mitochondria and its regulation in mammalian cells.


Subject(s)
Microtubules/metabolism , Mitochondria/metabolism , Animals , Biological Transport , Humans , Mitochondria/physiology
7.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38530280

ABSTRACT

Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure. Arrested proteins block further import, disturbing mitochondrial functions and cellular proteostasis. Cellular responses to translocation failure have been defined in yeast. We developed the cell line-based translocase clogging model to discover molecular mechanisms that resolve failed import events in humans. The mechanism we uncover differs significantly from these described in fungi, where ATPase-driven extraction of blocked protein is directly coupled with proteasomal processing. We found human cells to rely primarily on mitochondrial factors to clear translocation channel blockage. The mitochondrial membrane depolarization triggered proteolytic cleavage of the stalled protein, which involved mitochondrial protease OMA1. The cleavage allowed releasing the protein fragment that blocked the translocase. The released fragment was further cleared in the cytosol by VCP/p97 and the proteasome.


Subject(s)
Metalloendopeptidases , Mitochondria , Protein Transport , Humans , Endopeptidases , Mitochondria/metabolism , Proteasome Endopeptidase Complex , Proteolysis , Metalloendopeptidases/metabolism
8.
Biochim Biophys Acta ; 1817(10): 1740-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22406627

ABSTRACT

This overview discusses the results of research on the effects of most frequent mtDNA point mutations on cellular bioenergetics. Thirteen proteins coded by mtDNA are crucial for oxidative phosphorylation, 11 of them constitute key components of the respiratory chain complexes I, III and IV and 2 of mitochondrial ATP synthase. Moreover, pathogenic point mutations in mitochondrial tRNAs and rRNAs generate abnormal synthesis of the mtDNA coded proteins. Thus, pathogenic point mutations in mtDNA usually disturb the level of key parameter of the oxidative phosphorylation, i.e. the electric potential on the inner mitochondrial membrane (Δψ), and in a consequence calcium signalling and mitochondrial dynamics in the cell. Mitochondrial generation of reactive oxygen species is also modified in the mutated cells. The results obtained with cultured cells and describing biochemical consequences of mtDNA point mutations are full of contradictions. Still they help elucidate the biochemical basis of pathologies and provide a valuable tool for finding remedies in the future. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Subject(s)
DNA, Mitochondrial/metabolism , Membrane Potential, Mitochondrial , Point Mutation , RNA, Transfer/metabolism , RNA/metabolism , Animals , DNA, Mitochondrial/genetics , Electron Transport/genetics , Humans , RNA/genetics , RNA, Mitochondrial , RNA, Transfer/genetics , Reactive Oxygen Species/metabolism
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166787, 2023 10.
Article in English | MEDLINE | ID: mdl-37302428

ABSTRACT

Most cases of Parkinson's disease (PD) are idiopathic, with unknown aetiology and genetic background. However, approximately 10 % of cases are caused by defined genetic mutations, among which mutations in the parkin gene are the most common. There is increasing evidence of the involvement of mitochondrial dysfunction in the development of both idiopathic and genetic PD. However, the data on mitochondrial changes reported by different studies are inconsistent, which can reflect the variability in genetic background of the disease. Mitochondria, as a plastic and dynamic organelles, are the first place in the cell to respond to external and internal stress. In this work, we characterized mitochondrial function and dynamics (network morphology and turnover regulation) in primary fibroblasts from PD patients with parkin mutations. We performed clustering analysis of the obtained data to compare the profiles of mitochondrial parameters in PD patients and healthy donors. This allowed to extract the features characteristic for PD patients fibroblasts, which were a smaller and less complex mitochondrial network and decreased levels of mitochondrial biogenesis regulators and mitophagy mediators. The approach we used allowed a comprehensive characteristics of elements common for mitochondrial dynamics remodelling accompanying pathogenic mutation. This may be helpful in the deciphering key pathomechanisms of the PD disease.


Subject(s)
Parkinson Disease , Humans , Biomarkers/metabolism , Fibroblasts/metabolism , Mitochondria/genetics , Mitochondria/pathology , Parkinson Disease/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Biochim Biophys Acta ; 1797(6-7): 1163-70, 2010.
Article in English | MEDLINE | ID: mdl-20211146

ABSTRACT

Brain seizure activity is characterised by intense activation of mitochondrial oxidative phosphorylation. This stimulation of oxidative phosphorylation is in the low magnesium model of seizure-like events accompanied by substantial increase in formation of reactive oxygen species (ROS). However, it has remained unclear which ROS-generating sites can be attributed to this phenomenon. Here, we report stimulatory effects of calcium ions and uncouplers, mimicking mitochondrial activation, on ROS generation of isolated rat and mouse brain mitochondria. Since these stimulatory effects were visible with superoxide sensitive dyes, but with hydrogen peroxide sensitive dyes only in the additional presence of SOD, we conclude that the complex redox properties of the 'Qo' center at respiratory chain complex III are very likely responsible for these observations. In accordance with this hypothesis redox titrations of the superoxide production of antimycin-inhibited submitochondrial particles with the succinate/fumarate redox couple confirmed for brain tissue a bell-shaped dependency with a maximal superoxide production rate at +10 mV (pH=7.4). This reflects the complex redox properties of a semiquinone species which is the direct electron donor for oxygen reduction in complex III-dependent superoxide production. Therefore, we conclude that under conditions of increased energy load the complex III site can contribute to superoxide production of brain mitochondria, which might be relevant for epilepsy-related seizure activity.


Subject(s)
Brain/metabolism , Electron Transport Complex III/metabolism , Mitochondria/metabolism , Seizures/metabolism , Superoxides/metabolism , Animals , Benzimidazoles/pharmacology , Brain/drug effects , Calcium/metabolism , Electron Transport Complex I/metabolism , Hippocampus/metabolism , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Models, Neurological , Oxidation-Reduction , Oxidative Phosphorylation , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Ubiquinone/metabolism , Uncoupling Agents/pharmacology
11.
Postepy Biochem ; 57(2): 148-57, 2011.
Article in Polish | MEDLINE | ID: mdl-21913415

ABSTRACT

Glycogen storage diseases (GSD, glycogenoses) is a group of genetic disorders resulting from abnormal metabolism of glycogen--a polymeric molecule involved in intercellular glucose storage. Currently 13 different types of glycogenoses are known. They all result from mutations in genes for different enzymes, which directly or indirectly regulate glycogen synthesis and degradation. The clinical manifestation of GSDs encompasses primarily liver, striated muscle and brain tissue dysfunction. In those tissues glycogen plays a particularly important role. spectrum and severity of symptoms is very diverse, depending on both the type and subtype of the disease as well as on the individual features of the patient. The therapy is based mainly on application of an appropriate diet. Enzyme replacement therapy is currently available for GSD type II. For some of the other types the possibility for gene therapy is intensively investigated.


Subject(s)
Glycogen Storage Disease/genetics , Glycogen Storage Disease/metabolism , Glycogen/metabolism , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/therapy , Humans
12.
Antioxidants (Basel) ; 10(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200581

ABSTRACT

Although the sporadic form of Alzheimer's disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.

13.
Biochimie ; 186: 28-32, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33857563

ABSTRACT

Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme gene (GBE1) that lead to the accumulation of aberrant glycogen in affected tissues, mostly in the liver. To determine whether dysfunctional glycogen metabolism in GSD IV affects other components of cellular bioenergetics, we studied mitochondrial function in heterozygous Gbe1 knockout (Gbe1+/-) mice. Mitochondria isolated from the livers of Gbe1+/- mice showed elevated respiratory complex I activity and increased reactive oxygen species production, particularly by respiratory chain complex III. These observations indicate that GBE1 deficiency leads to broader rearrangements in energy metabolism and that the mechanisms underlying GSD IV pathogenesis may include more than merely mechanical cell damage caused by the presence of glycogen aggregates.


Subject(s)
Electron Transport Complex III/metabolism , Glycogen Debranching Enzyme System/deficiency , Glycogen Storage Disease Type IV/enzymology , Mitochondria, Liver/enzymology , Mitochondrial Proteins/metabolism , Animals , Electron Transport Complex III/genetics , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/pathology , Mice , Mice, Knockout , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Mitochondrial Proteins/genetics
14.
Food Chem Toxicol ; 154: 112316, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34089800

ABSTRACT

Mitochondria are among the first responders to various stress factors that challenge cell and tissue homeostasis. Various plant alkaloids have been investigated for their capacity to modulate mitochondrial activities. In this study, we used isolated mitochondria from mouse brain and liver tissues to assess nicotine, anatabine and anabasine, three alkaloids found in tobacco plant, for potential modulatory activity on mitochondrial bioenergetics parameters. All alkaloids decreased basal oxygen consumption of mouse brain mitochondria in a dose-dependent manner without any effect on the ADP-stimulated respiration. None of the alkaloids, at 1 nM or 1.25 µM concentrations, influenced the maximal rate of swelling of brain mitochondria. In contrast to brain mitochondria, 1.25 µM anatabine, anabasine and nicotine increased maximal rate of swelling of liver mitochondria suggesting a toxic effect. Only at 1 mM concentration, anatabine slowed down the maximal rate of Ca2+-induced swelling and increased the time needed to reach the maximal rate of swelling. The observed mitochondrial bioenergetic effects are probably mediated through a pathway independent of nicotinic acetylcholine receptors, as quantitative proteomic analysis could not confirm their expression in pure mitochondrial fractions isolated from mouse brain tissue.


Subject(s)
Alkaloids/toxicity , Mitochondria/drug effects , Plants/chemistry , Animals , Brain/drug effects , Brain/metabolism , Energy Metabolism/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Proteomics , Receptors, Nicotinic/metabolism
15.
Cell Physiol Biochem ; 26(2): 235-46, 2010.
Article in English | MEDLINE | ID: mdl-20798507

ABSTRACT

UNLABELLED: BMS-191095 is an opener of the mitochondrial ATP-regulated potassium channel, which has been shown to provide cytoprotection in models of ischemia-reperfusion induced injury in various tissues. This study aimed at checking the protective action of BMS-191095 under the conditions of oxidative stress or disruption of intracellular calcium homeostasis. METHODS: The cytoprotective potential of BMS-191095 was tested in C2C12 myoblasts injured by treatment with H(2)O(2) or calcium ionophore A23187. The influence of the opener on intracellular calcium levels, calpain activity and respiration rates were determined. RESULTS: BMS-191095 protected myoblasts from calcium ionophore A23187-induced injury, but not from H H(2)O(2)-induced injury. A23187-mediated cell damage was also prevented by calpain inhibitor PD 150606. A23187 administration led to a transient increase in cytosolic calcium levels, concomitant activation of calpains and a decrease in state 3 respiration rates, indicating mitochondrial dysfunction. Co-administration of BMS-191095 diminished calpain activation in A23187-treated cells but did not prevent mitochondrial damage. In the presence of BMS-191095, restoration of cytosolic calcium concentrations to basal levels after A23187 treatment was considerably faster which may underly the reduced activation of calpains. CONCLUSION: The BMS-191095-mediated cytoprotection observed in C2C12 myoblasts results probably from modulation of intracellular calcium transients leading to prevention of calpain activation.


Subject(s)
Benzopyrans/pharmacology , Calcium/metabolism , Cytoprotection/drug effects , Imidazoles/pharmacology , Myoblasts/metabolism , Potassium Channels/metabolism , Acrylates/pharmacology , Animals , Anti-Bacterial Agents/toxicity , Calcimycin/toxicity , Calpain/antagonists & inhibitors , Calpain/metabolism , Cell Line , Homeostasis , Hydrogen Peroxide/toxicity , Mice , Mitochondria/drug effects , Oxidative Stress , Oxygen Consumption/drug effects , Potassium Channels/chemistry
16.
Biochim Biophys Acta ; 1777(7-8): 689-95, 2008.
Article in English | MEDLINE | ID: mdl-18510942

ABSTRACT

Reactive oxygen species (ROS) have been widely implicated in the pathogenesis of various neurological diseases and aging. But the exact sites of ROS generation in brain tissue remained so far elusive. Here, we provide direct experimental evidence that at least 50% of total ROS generation in succinate-oxidizing homogenates of brain tissue can be attributed to complex I of mitochondrial respiratory chain. Applying quantitative methods for ROS detection we observed in different preparations from human, rat and mouse brain (digitonin-permeabilized tissue homogenates and isolated mitochondria) a linear relationship between rate of oxygen consumption and ROS generation with succinate as mitochondrial substrate. This quantitative relationship indicates, that under the particular conditions of oxygen saturation about 1% of the corresponding respiratory chain electron flow is redirected to form superoxide. Since we observed in mouse and rat brain mitochondria a unique dependency of both forward and reverse electron flow-dependent mitochondrial H(2)O(2) production on NAD redox state, we substantiated previous evidence that the FMN moiety of complex I is the major donor of electrons for the single electron reduction of molecular oxygen.


Subject(s)
Brain/metabolism , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Oxygen Consumption , Reactive Oxygen Species/metabolism , Animals , Hydrogen Peroxide/metabolism , Kinetics , Mice , Mice, Inbred C57BL , NAD/metabolism , Rats , Rats, Wistar , Submitochondrial Particles/metabolism , Superoxides/metabolism
17.
Biochimie ; 90(3): 450-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18157951

ABSTRACT

The therapeutic potential of lipoic acid (LA) in diabetes and diabetic nephropathy treatment was elucidated. Alloxan diabetic rabbits were treated daily for three weeks with either 10 or 50 mg of LA per kg body weight (i.p.). The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios, cysteine contents and the activities of the enzymes of glutathione metabolism; and 5) the activity of renal NADPH oxidase. Histological studies of kidneys were also performed. The treatment of diabetic rabbits with 50 mg of LA resulted in lethal hypoglycaemia in 50% of animals studied. Although the low dose of LA did not change serum glucose concentration, it decreased serum urea and creatinine concentrations, attenuated diabetes-induced decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. LA did not change the activities of the enzymes of glutathione metabolism, but it elevated hepatic content of cysteine, which limits the rate of glutathione biosynthesis. Moreover, LA lowered urine albumin concentration and attenuated glomerulopathy characteristic of diabetes. However, it did not affect diabetes-stimulated activity of renal NADPH oxidase. In view of these data, it is concluded that low doses of LA might be useful for the therapy of diabetes and diabetic nephropathy. Beneficial action of LA seems to result mainly from direct scavenging of HFR and restoring glutathione redox state due to elevation of intracellular cysteine levels.


Subject(s)
Antioxidants/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Oxidative Stress/drug effects , Thioctic Acid/therapeutic use , Animals , Blood Glucose/metabolism , Creatine/blood , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Glutathione/metabolism , Hydroxyl Radical/blood , Hydroxyl Radical/metabolism , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Kidney Cortex/pathology , Liver/metabolism , Oxidation-Reduction , Rabbits , Time Factors , Urea/blood
18.
Cell Death Dis ; 9(3): 332, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491385

ABSTRACT

Sites of close contact between mitochondria and the endoplasmic reticulum (ER) are known as mitochondria-associated membranes (MAM) or mitochondria-ER contacts (MERCs), and play an important role in both cell physiology and pathology. A growing body of evidence indicates that changes observed in the molecular composition of MAM and in the number of MERCs predisposes MAM to be considered a dynamic structure. Its involvement in processes such as lipid biosynthesis and trafficking, calcium homeostasis, reactive oxygen species production, and autophagy has been experimentally confirmed. Recently, MAM have also been studied in the context of different pathologies, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, type 2 diabetes mellitus and GM1-gangliosidosis. An underappreciated amount of data links MAM with aging or senescence processes. In the present review, we summarize the current knowledge of basic MAM biology, composition and action, and discuss the potential connections supporting the idea that MAM are significant players in longevity.


Subject(s)
Aging/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Animals , Cellular Senescence , Humans
19.
Food Chem Toxicol ; 115: 1-12, 2018 May.
Article in English | MEDLINE | ID: mdl-29448087

ABSTRACT

Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 µg/mL of 3R4F TPM or 150 µg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.


Subject(s)
Bronchi/drug effects , Epithelial Cells/drug effects , Mitochondria/drug effects , Nicotiana/adverse effects , Particulate Matter/adverse effects , Tobacco Products/adverse effects , Bronchi/cytology , Bronchi/metabolism , Cell Line , Epithelial Cells/cytology , Humans , Inhalation Exposure , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Smoke/analysis
20.
Biochim Biophys Acta ; 1757(5-6): 715-20, 2006.
Article in English | MEDLINE | ID: mdl-16787636

ABSTRACT

Mitochondrial potassium channels, such as ATP-regulated or large conductance Ca2+ -activated and voltage gated channels were implicated in cytoprotective phenomenon in different tissues. Basic effects of these channels activity include changes in mitochondrial matrix volume, mitochondrial respiration and membrane potential, and generation of reactive oxygen species. In this paper, we describe the pharmacological properties of mitochondrial potassium channels and their modulation by channel inhibitors and potassium channel openers. We also discuss potential side effects of these substances.


Subject(s)
Mitochondria/physiology , Potassium Channels/physiology , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Humans , Ion Channel Gating , Membrane Potentials/drug effects , Mitochondria/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels/agonists , Potassium Channels, Calcium-Activated/agonists , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/agonists , Potassium Channels, Voltage-Gated/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL