Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Renal Physiol ; 326(3): F313-F325, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38205544

ABSTRACT

Podocytes are highly specialized epithelial cells that surround the capillaries of the glomeruli in the kidney. Together with the glomerular endothelial cells, these postmitotic cells are responsible for regulating filtrate from the circulating blood with their organized network of interdigitating foot processes that wrap around the glomerular basement membrane. Although podocyte injury and subsequent loss is the hallmark of many glomerular diseases, recent evidence suggests that the cell-cell communication between podocytes and other glomerular and nonglomerular cells is critical for the development and progression of kidney disease. In this review, we highlight these key cellular pathways of communication and how they might be a potential target for therapy in glomerular disease. We also postulate that podocytes might serve as a central hub for communication in the kidney under basal conditions and in response to cellular stress, which may have implications for the development and progression of glomerular diseases.


Subject(s)
Kidney Diseases , Podocytes , Humans , Podocytes/metabolism , Endothelial Cells , Kidney Diseases/metabolism , Kidney , Glomerular Basement Membrane/metabolism
2.
Blood Purif ; 53(1): 30-39, 2024.
Article in English | MEDLINE | ID: mdl-37918364

ABSTRACT

INTRODUCTION: Endotoxin is a key driver of sepsis, which frequently causes acute kidney injury (AKI). However, endotoxins may also be found in non-bacteremic critically ill patients, likely from intestinal translocation. Preclinical models show that endotoxins can directly injure the kidneys, and in COVID-19 patients, endotoxemia correlated with AKI. We sought to determine correlations between endotoxemia and kidney and hospital outcomes in a broad group of critically ill patients. METHODS: In this single-center, serial prospective study, 124 predominantly Caucasian adult patients were recruited within 48 h of admission to Stony Brook University Hospital Intensive Care Unit (ICU). Demographics, vital signs, laboratory data, and outcomes were collected. Circulating endotoxin was measured on days 1, 4, and 8 using the endotoxin activity assay (EAA). The association of EAA with outcomes was examined with EAA: (1) categorized as <0.6, ≥0.6, and nonresponders (NRs); and (2) used as a continuous variable. RESULTS: Patients with EAA ≥0.6 had a higher prevalence of proteinuria, and lower arterial oxygen saturation (SaO2) to fraction of inspired oxygen (FiO2) (SaO2/FiO2) ratio versus patients with EAA <0.6. EAA levels positively correlated with serum creatinine (sCr) levels on day 1. Patients whose EAA level stayed ≥0.6 had a slower decline in sCr compared to those whose EAA started at ≥0.6 and subsequently declined. Patients with AKI stage 1 and EAA ≥0.6 on day 1 showed slower decline in sCr compared to patients with stage 1 AKI and EAA <0.6. EAA ≥0.6 and NR patients had longer hospital stay and delayed ICU discharge versus EAA <0.6. CONCLUSIONS: High EAA levels correlated with worse kidney function and outcomes. Patients whose EAA levels fell, and those with AKI stage I and day 1 EAA <0.6 recovered more quickly compared to those with EAA ≥0.6, suggesting that removal of circulating endotoxins may be beneficial in critically ill patients.


Subject(s)
Acute Kidney Injury , Endotoxemia , Adult , Humans , Endotoxemia/complications , Endotoxemia/therapy , Prospective Studies , Length of Stay , Critical Illness/epidemiology , Endotoxins , Intensive Care Units , Acute Kidney Injury/epidemiology , Kidney , Oxygen
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074766

ABSTRACT

Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.


Subject(s)
Acute Kidney Injury/metabolism , Amino Acids, Branched-Chain/metabolism , Kidney/injuries , Kidney/metabolism , Kruppel-Like Factor 6/metabolism , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Inflammation , Kidney/pathology , Kidney Tubules, Proximal/metabolism , Kruppel-Like Factor 6/genetics , Kruppel-Like Transcription Factors/genetics , Mice , Transcription Factors/metabolism
4.
J Am Soc Nephrol ; 34(5): 737-750, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36800545

ABSTRACT

Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs. In addition to their homeostatic functions, podocytes and PECs also have roles in kidney pathogenesis. Rapid podocyte loss in diseases, such as rapidly progressive GN and collapsing and cellular subtypes of FSGS, is closely allied with PEC proliferation and migration toward the capillary tuft, resulting in the formation of crescents and pseudocrescents. PECs are thought to contribute to disease progression and severity, and the interdependence between these two cell types during development and in various manifestations of kidney pathology is the primary focus of this review.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Humans , Podocytes/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney Glomerulus/pathology , Bowman Capsule/metabolism , Bowman Capsule/pathology , Epithelial Cells/metabolism
5.
Small ; 19(17): e2205058, 2023 04.
Article in English | MEDLINE | ID: mdl-36703524

ABSTRACT

Lip-reading provides an effective speech communication interface for people with voice disorders and for intuitive human-machine interactions. Existing systems are generally challenged by bulkiness, obtrusiveness, and poor robustness against environmental interferences. The lack of a truly natural and unobtrusive system for converting lip movements to speech precludes the continuous use and wide-scale deployment of such devices. Here, the design of a hardware-software architecture to capture, analyze, and interpret lip movements associated with either normal or silent speech is presented. The system can recognize different and similar visemes. It is robust in a noisy or dark environment. Self-adhesive, skin-conformable, and semi-transparent dry electrodes are developed to track high-fidelity speech-relevant electromyogram signals without impeding daily activities. The resulting skin-like sensors can form seamless contact with the curvilinear and dynamic surfaces of the skin, which is crucial for a high signal-to-noise ratio and minimal interference. Machine learning algorithms are employed to decode electromyogram signals and convert them to spoken words. Finally, the applications of the developed lip-reading system in augmented reality and medical service are demonstrated, which illustrate the great potential in immersive interaction and healthcare applications.


Subject(s)
Movement , Skin , Humans , Electromyography/methods , Electrodes , Machine Learning
6.
Pediatr Nephrol ; 38(4): 975-986, 2023 04.
Article in English | MEDLINE | ID: mdl-36181578

ABSTRACT

The kidney, and in particular the proximal tubule (PT), has a high demand for ATP, due to its function in bulk reabsorption of solutes. In normal PT, ATP levels are predominantly maintained by fatty acid ß-oxidation (FAO), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. The normal PT also undertakes gluconeogenesis and metabolism of amino acids. Acute kidney injury (AKI) results in profound PT metabolic alterations, including suppression of FAO, gluconeogenesis, and metabolism of some amino acids, and upregulation of glycolytic enzymes. Recent studies have elucidated new transcriptional mechanisms regulating metabolic pathways in normal PT, as well as the metabolic switch in AKI. A number of transcription factors have been shown to play important roles in FAO, which are themselves downregulated in AKI, while hypoxia-inducible factor 1α, which is upregulated in ischemia-reperfusion injury, is a likely driver of the upregulation of glycolytic enzymes. Transcriptional regulation of amino acid metabolic pathways is less well understood, except for catabolism of branched-chain amino acids, which is likely suppressed in AKI by upregulation of Krüppel-like factor 6. This review will focus on the transcriptional regulation of specific metabolic pathways in normal PT and in AKI, as well as highlighting some of the gaps in knowledge and challenges that remain to be addressed.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Humans , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Reperfusion Injury/metabolism , Amino Acids/metabolism , Adenosine Triphosphate/metabolism
7.
Kidney Int ; 102(1): 58-77, 2022 07.
Article in English | MEDLINE | ID: mdl-35483525

ABSTRACT

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Subject(s)
Kruppel-Like Factor 4 , Thrombotic Microangiopathies , Animals , Complement Activation , Complement System Proteins/metabolism , Endothelium , Humans , Kidney Glomerulus/pathology , Kruppel-Like Transcription Factors/genetics , Mice , Thrombotic Microangiopathies/pathology
8.
Blood Purif ; 51(6): 513-519, 2022.
Article in English | MEDLINE | ID: mdl-34515062

ABSTRACT

INTRODUCTION: Mechanism(s) mediating critical illness in coronavirus disease 2019 (COVID-19) remain unclear. Previous reports demonstrate the existence of endotoxemia in viral infections without superimposed gram-negative bacteremia, but the rate and severity of endotoxemia in critically ill patients with COVID-19 requires further exploration. MATERIALS AND METHODS: This is a single-center cross-sectional study of 92 intensive care unit patients diagnosed with COVID-19 pneumonia. Endotoxin activity (EA) was measured in patients that met the following criteria: (1) age ≥18 years and (2) multi-organ dysfunction score >9 from March 24, 2020, to June 20, 2020. RESULTS: A total of 32 patients met the inclusion/exclusion criteria for measurement of EA. The median age of the study cohort was 60 years with a majority male (21/32, 65%) with hypertension (50%). A significant proportion of the patients exhibited either elevated EA in the intermediate range (0.40-0.59 EA units) (10/32, 31%) or high range (≥0.60 EA units) (14/32, 44%) or were nonresponders (NRs, low neutrophil response) to EA (6/32, 19%), with the presence of gram-negative bacteremia only in 2/32 (6%) patients. Low EA was reported in 2/32 patients. NRs (5/6, 83%) and patients with high EA (7/14, 50%) exhibited higher acute kidney injury (AKI) as compared to patients with low/intermediate EA level (1/12, 8.3%). DISCUSSION/CONCLUSION: Elevated EA was observed in a large majority of critically ill patients with COVID-19 and multi-organ dysfunction despite a low incidence of concurrent gram-negative bacteremia. While we observed that elevated EA and nonresponsiveness to EA were associated with AKI in critically ill patients with COVID-19, these findings require further validation in larger longitudinal cohorts.


Subject(s)
Acute Kidney Injury , Bacteremia , COVID-19 , Endotoxemia , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Adolescent , Bacteremia/complications , COVID-19/complications , Critical Illness , Cross-Sectional Studies , Endotoxemia/complications , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies
9.
Kidney Int ; 100(6): 1250-1267, 2021 12.
Article in English | MEDLINE | ID: mdl-34634362

ABSTRACT

Loss of fatty acid ß-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.


Subject(s)
Acute Kidney Injury , Fatty Acids/metabolism , Kruppel-Like Transcription Factors , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Animals , Kidney , Kidney Tubules, Proximal , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout
10.
J Infect Dis ; 222(8): 1256-1264, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32702098

ABSTRACT

BACKGROUND: This study investigated continued and discontinued use of angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARB) during hospitalization of 614 hypertensive laboratory-confirmed COVID-19 patients. METHODS: Demographics, comorbidities, vital signs, laboratory data, and ACEi/ARB usage were analyzed. To account for confounders, patients were substratified by whether they developed hypotension and acute kidney injury (AKI) during the index hospitalization. RESULTS: Mortality (22% vs 17%, P > .05) and intensive care unit (ICU) admission (26% vs 12%, P > .05) rates were not significantly different between non-ACEi/ARB and ACEi/ARB groups. However, patients who continued ACEi/ARBs in the hospital had a markedly lower ICU admission rate (12% vs 26%; P = .001; odds ratio [OR] = 0.347; 95% confidence interval [CI], .187-.643) and mortality rate (6% vs 28%; P = .001; OR = 0.215; 95% CI, .101-.455) compared to patients who discontinued ACEi/ARB. The odds ratio for mortality remained significantly lower after accounting for development of hypotension or AKI. CONCLUSIONS: These findings suggest that continued ACEi/ARB use in hypertensive COVID-19 patients yields better clinical outcomes.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Coronavirus Infections/mortality , Hypertension/drug therapy , Hypertension/virology , Pneumonia, Viral/mortality , Acute Kidney Injury/chemically induced , Aged , Aged, 80 and over , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/drug therapy , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , United States/epidemiology , COVID-19 Drug Treatment
11.
Am J Physiol Renal Physiol ; 319(6): F955-F965, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33073585

ABSTRACT

Mitochondria play a complex role in maintaining cellular function including ATP generation, generation of biosynthetic precursors for macromolecules, maintenance of redox homeostasis, and metabolic waste management. Although the contribution of mitochondrial function in various kidney diseases has been studied, there are still avenues that need to be explored under healthy and diseased conditions. Mitochondrial damage and dysfunction have been implicated in experimental models of podocytopathy as well as in humans with glomerular diseases resulting from podocyte dysfunction. Specifically, in the podocyte, metabolism is largely driven by oxidative phosphorylation or glycolysis depending on the metabolic needs. These metabolic needs may change drastically in the presence of podocyte injury in glomerular diseases such as diabetic kidney disease or focal segmental glomerulosclerosis. Here, we review the role of mitochondria in the podocyte and the factors regulating its function at baseline and in a variety of podocytopathies to identify potential targets for therapy.


Subject(s)
Mitochondria/physiology , Podocytes/physiology , Humans , Kidney Diseases/metabolism
12.
Development ; 144(5): 737-754, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28246209

ABSTRACT

Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.


Subject(s)
Embryonic Development , Kruppel-Like Transcription Factors/metabolism , Lung/embryology , Stem Cells/cytology , Animals , Cell Differentiation , Cell Lineage , Female , Humans , Male , Mice , Mice, Transgenic , Phylogeny , Regeneration , Transcription Factors/metabolism , Zinc Fingers
13.
Kidney Blood Press Res ; 45(6): 1018-1032, 2020.
Article in English | MEDLINE | ID: mdl-33171466

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is strongly associated with poor outcomes in hospitalized patients with coronavirus disease 2019 (COVID-19), but data on the association of proteinuria and hematuria are limited to non-US populations. In addition, admission and in-hospital measures for kidney abnormalities have not been studied separately. METHODS: This retrospective cohort study aimed to analyze these associations in 321 patients sequentially admitted between March 7, 2020 and April 1, 2020 at Stony Brook University Medical Center, New York. We investigated the association of proteinuria, hematuria, and AKI with outcomes of inflammation, intensive care unit (ICU) admission, invasive mechanical ventilation (IMV), and in-hospital death. We used ANOVA, t test, χ2 test, and Fisher's exact test for bivariate analyses and logistic regression for multivariable analysis. RESULTS: Three hundred patients met the inclusion criteria for the study cohort. Multivariable analysis demonstrated that admission proteinuria was significantly associated with risk of in-hospital AKI (OR 4.71, 95% CI 1.28-17.38), while admission hematuria was associated with ICU admission (OR 4.56, 95% CI 1.12-18.64), IMV (OR 8.79, 95% CI 2.08-37.00), and death (OR 18.03, 95% CI 2.84-114.57). During hospitalization, de novo proteinuria was significantly associated with increased risk of death (OR 8.94, 95% CI 1.19-114.4, p = 0.04). In-hospital AKI increased (OR 27.14, 95% CI 4.44-240.17) while recovery from in-hospital AKI decreased the risk of death (OR 0.001, 95% CI 0.001-0.06). CONCLUSION: Proteinuria and hematuria both at the time of admission and during hospitalization are associated with adverse clinical outcomes in hospitalized patients with COVID-19.


Subject(s)
Acute Kidney Injury/urine , Acute Kidney Injury/virology , COVID-19/urine , Hematuria/virology , Proteinuria/virology , Acute Kidney Injury/mortality , Aged , COVID-19/mortality , COVID-19/virology , Cohort Studies , Female , Hematuria/mortality , Humans , Male , Middle Aged , New York/epidemiology , Proteinuria/mortality , Retrospective Studies , SARS-CoV-2/isolation & purification , Survival Analysis
14.
J Am Soc Nephrol ; 30(2): 187-200, 2019 02.
Article in English | MEDLINE | ID: mdl-30642877

ABSTRACT

Inhibition of vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling is a common therapeutic strategy in oncology, with new drugs continuously in development. In this review, we consider the experimental and clinical evidence behind the diverse nephrotoxicities associated with the inhibition of this pathway. We also review the renal effects of VEGF inhibition's mediation of key downstream signaling pathways, specifically MAPK/ERK1/2, endothelial nitric oxide synthase, and mammalian target of rapamycin (mTOR). Direct VEGFA inhibition via antibody binding or VEGF trap (a soluble decoy receptor) is associated with renal-specific thrombotic microangiopathy (TMA). Reports also indicate that tyrosine kinase inhibition of the VEGF receptors is preferentially associated with glomerulopathies such as minimal change disease and FSGS. Inhibition of the downstream pathway RAF/MAPK/ERK has largely been associated with tubulointerstitial injury. Inhibition of mTOR is most commonly associated with albuminuria and podocyte injury, but has also been linked to renal-specific TMA. In all, we review the experimentally validated mechanisms by which VEGFA-VEGFR2 inhibitors contribute to nephrotoxicity, as well as the wide range of clinical manifestations that have been reported with their use. We also highlight potential avenues for future research to elucidate mechanisms for minimizing nephrotoxicity while maintaining therapeutic efficacy.


Subject(s)
Bevacizumab/therapeutic use , Molecular Targeted Therapy/methods , Nephrotic Syndrome/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Vascular Endothelial Growth Factor A/genetics , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Nephrotic Syndrome/diagnosis , Prognosis , Randomized Controlled Trials as Topic , Receptors, Vascular Endothelial Growth Factor/drug effects , Receptors, Vascular Endothelial Growth Factor/genetics , Signal Transduction , Treatment Outcome , Vascular Endothelial Growth Factor A/drug effects
16.
Am J Physiol Renal Physiol ; 316(6): F1151-F1161, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30943069

ABSTRACT

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a multifaceted transduction system that regulates cellular responses to incoming signaling ligands. STAT3 is a central member of the JAK/STAT signaling cascade and has long been recognized for its increased transcriptional activity in cancers and autoimmune disorders but has only recently been in the spotlight for its role in the progression of kidney disease. Although genetic knockout and manipulation studies have demonstrated the salutary benefits of inhibiting STAT3 activity in several kidney disease models, pharmacological inhibition has yet to make it to the clinical forefront. In recent years, significant effort has been aimed at suppressing STAT3 activation for treatment of cancers, which has led to the development of a wide variety of STAT3 inhibitors, but only a handful have been tested in kidney disease models. Here, we review the detrimental role of dysregulated STAT3 activation in a variety of kidney diseases and the current progress in the treatment of kidney diseases with pharmacological inhibition of STAT3 activity.


Subject(s)
Kidney Diseases/drug therapy , Kidney/drug effects , Renal Agents/therapeutic use , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Humans , Janus Kinases/metabolism , Kidney/metabolism , Kidney/physiopathology , Kidney Diseases/metabolism , Kidney Diseases/physiopathology , Molecular Targeted Therapy , STAT3 Transcription Factor/metabolism , Signal Transduction
17.
J Am Soc Nephrol ; 29(10): 2529-2545, 2018 10.
Article in English | MEDLINE | ID: mdl-30143559

ABSTRACT

BACKGROUND: Podocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte's actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte. METHODS: We induced podocyte-specific KLF15 in two proteinuric murine models, HIV-1 transgenic (Tg26) mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific KLF15 in Tg26 mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation. RESULTS: In Tg26 mice, inducing podocyte-specific KLF15 attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the Tg26 mouse model shows that KLF15 induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1. CONCLUSIONS: Inducing podocyte-specific KLF15 attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that KLF15 induction might be a potential strategy for treating proteinuric kidney disease.


Subject(s)
DNA-Binding Proteins/biosynthesis , Kidney Diseases/metabolism , Podocytes/metabolism , Proteinuria/metabolism , Transcription Factors/biosynthesis , Actin Cytoskeleton/metabolism , Animals , Cell Differentiation , Cells, Cultured , DNA-Binding Proteins/genetics , Disease Models, Animal , Focal Adhesions , Gene Knockdown Techniques , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Kidney Diseases/genetics , Kidney Diseases/pathology , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Transgenic , Nephrosis, Lipoid/genetics , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Podocytes/pathology , Proteinuria/genetics , Proteinuria/pathology , Transcription Factors/genetics , Up-Regulation , WT1 Proteins/antagonists & inhibitors , WT1 Proteins/genetics , WT1 Proteins/metabolism
18.
J Am Soc Nephrol ; 28(1): 166-184, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27288011

ABSTRACT

Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.


Subject(s)
Cell Differentiation/drug effects , DNA-Binding Proteins/physiology , Glucocorticoids/pharmacology , Podocytes/cytology , Podocytes/drug effects , Transcription Factors/physiology , Adolescent , Adult , Animals , Antigens, Differentiation/drug effects , Child , Dexamethasone/pharmacology , Female , Glomerulosclerosis, Focal Segmental/immunology , Humans , Kruppel-Like Transcription Factors , Male , Mice , Middle Aged , Nephrosis, Lipoid/immunology , Young Adult
19.
Am J Physiol Renal Physiol ; 312(2): F259-F265, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27852611

ABSTRACT

Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors critical to mammalian embryonic development, regeneration, and human disease. There is emerging evidence that KLFs play a vital role in key physiological processes in the kidney, ranging from maintenance of glomerular filtration barrier to tubulointerstitial inflammation to progression of kidney fibrosis. Seventeen members of the KLF family have been identified, and several have been well characterized in the kidney. Although they may share some overlap in their downstream targets, their structure and function remain distinct. This review highlights our current knowledge of KLFs in the kidney, which includes their pattern of expression and their function in regulating key biological processes. We will also critically examine the currently available literature on KLFs in the kidney and offer some key areas in need of further investigation.


Subject(s)
Kidney Diseases/metabolism , Kidney/metabolism , Kruppel-Like Transcription Factors/metabolism , Animals , Disease Progression , Humans
20.
Kidney Int ; 92(5): 1178-1193, 2017 11.
Article in English | MEDLINE | ID: mdl-28651950

ABSTRACT

Large epidemiological studies clearly demonstrate that multiple episodes of acute kidney injury contribute to the development and progression of kidney fibrosis. Although our understanding of kidney fibrosis has improved in the past two decades, we have limited therapeutic strategies to halt its progression. Myofibroblast differentiation and proliferation remain critical to the progression of kidney fibrosis. Although canonical Wnt signaling can trigger the activation of myofibroblasts in the kidney, mediators of Wnt inhibition in the resident progenitor cells are unclear. Recent studies demonstrate that the loss of a Krüppel-like factor 15 (KLF15), a kidney-enriched zinc-finger transcription factor, exacerbates kidney fibrosis in murine models. Here, we tested whether Klf15 mRNA and protein expression are reduced in late stages of fibrosis in mice that underwent unilateral ureteric obstruction, a model of progressive renal fibrosis. Knockdown of Klf15 in Foxd1-expressing cells (Foxd1-Cre Klf15fl/fl) increased extracellular matrix deposition and myofibroblast proliferation as compared to wildtype (Foxd1-Cre Klf15+/+) mice after three and seven days of ureteral obstruction. This was validated in mice receiving angiotensin II treatment for six weeks. In both these murine models, the increase in renal fibrosis was found in Foxd1-Cre Klf15fl/fl mice and accompanied by the activation of Wnt/ß-catenin signaling. Furthermore, knockdown of Klf15 in cultured mouse embryonic fibroblasts activated canonical Wnt/ß-catenin signaling, increased profibrotic transcripts, and increased proliferation after treatment with a Wnt1 ligand. Conversely, the overexpression of KLF15 inhibited phospho-ß-catenin (Ser552) expression in Wnt1-treated cells. Thus, KLF15 has a critical role in attenuating kidney fibrosis by inhibiting the canonical Wnt/ß-catenin pathway.


Subject(s)
DNA-Binding Proteins/metabolism , Forkhead Transcription Factors/metabolism , Kidney Diseases/pathology , Kidney/pathology , Myofibroblasts/pathology , Transcription Factors/metabolism , Wnt Signaling Pathway , Angiotensin II/toxicity , Animals , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/genetics , Disease Models, Animal , Disease Progression , Fibrosis , Gene Expression Regulation , Gene Knockdown Techniques , Kidney/cytology , Kidney Diseases/etiology , Kruppel-Like Transcription Factors , Male , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism , Phosphorylation , RNA, Messenger/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Transcription Factors/genetics , Wnt1 Protein/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL