Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 143(5): 404-416, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37890149

ABSTRACT

ABSTRACT: Lisocabtagene maraleucel (liso-cel) demonstrated significant efficacy with a manageable safety profile as third-line or later treatment for patients with relapsed or refractory (R/R) large B-cell lymphoma (LBCL) in the TRANSCEND NHL 001 study. Primary end points were adverse events (AEs), dose-limiting toxicities, and objective response rate (ORR) per independent review committee. Key secondary end points were complete response (CR) rate, duration of response (DOR), progression-free survival (PFS), and overall survival (OS). After 2-year follow-up, patients could enroll in a separate study assessing long-term (≤15 years) safety and OS. Liso-cel-treated patients (N = 270) had a median age of 63 years (range, 18-86 years) and a median of 3 prior lines (range, 1-8) of systemic therapy, and 181 of them (67%) had chemotherapy-refractory LBCL. Median follow-up was 19.9 months. In efficacy-evaluable patients (N = 257), the ORR was 73% and CR rate was 53%. The median (95% confidence interval) DOR, PFS, and OS were 23.1 (8.6 to not reached), 6.8 (3.3-12.7), and 27.3 months (16.2-45.6), respectively. Estimated 2-year DOR, PFS, and OS rates were 49.5%, 40.6%, and 50.5%, respectively. In the 90-day treatment-emergent period (N = 270), grade 3 to 4 cytokine release syndrome and neurological events occurred in 2% and 10% of patients, respectively. The most common grade ≥3 AEs in treatment-emergent and posttreatment-emergent periods, respectively, were neutropenia (60% and 7%) and anemia (37% and 6%). Liso-cel demonstrated durable remissions and a manageable safety profile with no new safety signals during the 2-year follow-up in patients with R/R LBCL. These trials were registered at www.ClinicalTrials.gov as #NCT02631044 and #NCT03435796.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Neutropenia , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Follow-Up Studies , Neoplasm Recurrence, Local/etiology , Lymphoma, Large B-Cell, Diffuse/therapy , Neutropenia/etiology , Immunotherapy, Adoptive/adverse effects
2.
Blood ; 143(6): 496-506, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37879047

ABSTRACT

ABSTRACT: Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for relapsed/refractory (R/R) follicular lymphoma (FL). Approval was supported by the phase 2, multicenter, single-arm ZUMA-5 study of axi-cel for patients with R/R indolent non-Hodgkin lymphoma (iNHL; N = 104), including FL and marginal zone lymphoma (MZL). In the primary analysis (median follow-up, 17.5 months), the overall response rate (ORR) was 92% (complete response rate, 74%). Here, we report long-term outcomes from ZUMA-5. Eligible patients with R/R iNHL after ≥2 lines of therapy underwent leukapheresis, followed by lymphodepleting chemotherapy and axi-cel infusion (2 × 106 CAR T cells per kg). The primary end point was ORR, assessed in this analysis by investigators in all enrolled patients (intent-to-treat). After median follow-up of 41.7 months in FL (n = 127) and 31.8 months in MZL (n = 31), ORR was comparable with that of the primary analysis (FL, 94%; MZL, 77%). Median progression-free survival was 40.2 months in FL and not reached in MZL. Medians of overall survival were not reached in either disease type. Grade ≥3 adverse events of interest that occurred after the prior analyses were largely in recently treated patients. Clinical and pharmacokinetic outcomes correlated negatively with recent exposure to bendamustine and high metabolic tumor volume. After 3 years of follow-up in ZUMA-5, axi-cel demonstrated continued durable responses, with very few relapses beyond 2 years, and manageable safety in patients with R/R iNHL. The ZUMA-5 study was registered at www.clinicaltrials.gov as #NCT03105336.


Subject(s)
Biological Products , Lymphoma, B-Cell, Marginal Zone , Lymphoma, Follicular , Lymphoma, Large B-Cell, Diffuse , Humans , Follow-Up Studies , Neoplasm Recurrence, Local/drug therapy , Biological Products/therapeutic use , Immunotherapy, Adoptive/adverse effects , Lymphoma, Follicular/drug therapy , Lymphoma, B-Cell, Marginal Zone/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Antigens, CD19/therapeutic use
3.
Blood ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683966

ABSTRACT

Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective anti-leukemic effect post-HCT. We conducted a phase I clinical trial employing a novel TCR-T product targeting the minor H antigen HA-1 to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T post-HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8-co-receptor were successfully manufactured from HA-1 disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to nine HCT recipients who had developed disease recurrence post-HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, four patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with one ongoing at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial is registered at clinicaltrials.gov as NCT03326921.

4.
Clin Infect Dis ; 78(4): 1022-1032, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37975819

ABSTRACT

BACKGROUND: The epidemiology of cytomegalovirus (CMV) after chimeric antigen receptor-modified T-cell immunotherapy (CARTx) is poorly understood owing to a lack of routine surveillance. METHODS: We prospectively enrolled 72 adult CMV-seropositive CD19-, CD20-, or BCMA-targeted CARTx recipients and tested plasma samples for CMV before and weekly up to 12 weeks after CARTx. We assessed CMV-specific cell-mediated immunity (CMV-CMI) before and 2 and 4 weeks after CARTx, using an interferon γ release assay to quantify T-cell responses to IE-1 and pp65. We tested pre-CARTx samples to calculate a risk score for cytopenias and infection (CAR-HEMATOTOX). We used Cox regression to evaluate CMV risk factors and evaluated the predictive performance of CMV-CMI for CMV reactivation in receiver operator characteristic curves. RESULTS: CMV was detected in 1 patient (1.4%) before and in 18 (25%) after CARTx, for a cumulative incidence of 27% (95% confidence interval, 16.8-38.2). The median CMV viral load (interquartile range) was 127 (interquartile range, 61-276) IU/mL, with no end-organ disease observed; 5 patients received preemptive therapy based on clinical results. CMV-CMI values reached a nadir 2 weeks after infusion and recovered to baseline levels by week 4. In adjusted models, BCMA-CARTx (vs CD19/CD20) and corticosteroid use for >3 days were significantly associated with CMV reactivation, and possible associations were detected for lower week 2 CMV-CMI and more prior antitumor regimens. The cumulative incidence of CMV reactivation almost doubled when stratified by BCMA-CARTx target and use of corticosteroids for >3 days (46% and 49%, respectively). CONCLUSIONS: CMV testing could be considered between 2 and 6 weeks in high-risk CARTx recipients.


Subject(s)
Cytomegalovirus Infections , Receptors, Chimeric Antigen , Adult , Humans , Cytomegalovirus , B-Cell Maturation Antigen , Immunity, Cellular , Cell- and Tissue-Based Therapy
5.
Lancet ; 402(10402): 641-654, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37295445

ABSTRACT

BACKGROUND: Patients with relapsed or refractory chronic lymphocytic leukaemia or small lymphocytic lymphoma for whom treatment has failed with both Bruton tyrosine kinase (BTK) inhibitor and venetoclax have few treatment options and poor outcomes. We aimed to evaluate the efficacy and safety of lisocabtagene maraleucel (liso-cel) at the recommended phase 2 dose in patients with relapsed or refractory chronic lymphocytic leukaemia or small lymphocytic lymphoma. METHODS: We report the primary analysis of TRANSCEND CLL 004, an open-label, single-arm, phase 1-2 study conducted in the USA. Patients aged 18 years or older with relapsed or refractory chronic lymphocytic leukaemia or small lymphocytic lymphoma and at least two previous lines of therapy, including a BTK inhibitor, received an intravenous infusion of liso-cel at one of two target dose levels: 50 × 106 (dose level 1) or 100 × 106 (dose level 2, DL2) chimeric antigen receptor-positive T cells. The primary endpoint was complete response or remission (including with incomplete marrow recovery), assessed by independent review according to the 2018 International Workshop on Chronic Lymphocytic Leukemia criteria, in efficacy-evaluable patients with previous BTK inhibitor progression and venetoclax failure (the primary efficacy analysis set) at DL2 (null hypothesis of ≤5%). This trial is registered with ClinicalTrials.gov, NCT03331198. FINDINGS: Between Jan 2, 2018, and June 16, 2022, 137 enrolled patients underwent leukapheresis at 27 sites in the USA. 117 patients received liso-cel (median age 65 years [IQR 59-70]; 37 [32%] female and 80 [68%] male; 99 [85%] White, five [4%] Black or African American, two [2%] other races, and 11 [9%] unknown race; median of five previous lines of therapy [IQR 3-7]); all 117 participants had received and had treatment failure on a previous BTK inhibitor. A subset of patients had also experienced venetoclax failure (n=70). In the primary efficacy analysis set at DL2 (n=49), the rate of complete response or remission (including with incomplete marrow recovery) was statistically significant at 18% (n=9; 95% CI 9-32; p=0·0006). In patients treated with liso-cel, grade 3 cytokine release syndrome was reported in ten (9%) of 117 (with no grade 4 or 5 events) and grade 3 neurological events were reported in 21 (18%; one [1%] grade 4, no grade 5 events). Among 51 deaths on the study, 43 occurred after liso-cel infusion, of which five were due to treatment-emergent adverse events (within 90 days of liso-cel infusion). One death was related to liso-cel (macrophage activation syndrome-haemophagocytic lymphohistiocytosis). INTERPRETATION: A single infusion of liso-cel was shown to induce complete response or remission (including with incomplete marrow recovery) in patients with relapsed or refractory chronic lymphocytic leukaemia or small lymphocytic lymphoma, including patients who had experienced disease progression on a previous BTK inhibitor and venetoclax failure. The safety profile was manageable. FUNDING: Juno Therapeutics, a Bristol-Myers Squibb Company.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Aged , Female , Humans , Male , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Remission Induction , Sulfonamides/therapeutic use
6.
Blood ; 139(26): 3722-3731, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35439295

ABSTRACT

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cells are novel therapies showing great promise for patients with relapsed or refractory (R/R) aggressive B-cell non-Hodgkin lymphoma (B-NHL). Single-arm studies showed significant variations in outcomes across distinct CD19 CAR T-cell products. To estimate the independent impact of the CAR T-cell product type on outcomes, we retrospectively analyzed data from 129 patients with R/R aggressive B-NHL treated with cyclophosphamide and fludarabine lymphodepletion followed by either a commercially available CD19 CAR T-cell therapy (axicabtagene ciloleucel [axicel] or tisagenlecleucel [tisacel]), or the investigational product JCAR014 on a phase 1/2 clinical trial (NCT01865617). After adjustment for age, hematopoietic cell transplantation-specific comorbidity index, lactate dehydrogenase (LDH), largest lesion diameter, and absolute lymphocyte count (ALC), CAR T-cell product type remained associated with outcomes in multivariable models. JCAR014 was independently associated with lower cytokine release syndrome (CRS) severity compared with axicel (adjusted odds ratio [aOR], 0.19; 95% confidence interval [CI]; 0.08-0.46), with a trend toward lower CRS severity with tisacel compared with axicel (aOR, 0.47; 95% CI, 0.21-1.06; P = .07). Tisacel (aOR, 0.17; 95% CI, 0.06-0.48) and JCAR014 (aOR, 0.17; 95% CI, 0.06-0.47) were both associated with lower immune effector cell-associated neurotoxicity syndrome severity compared with axicel. Lower odds of complete response (CR) were predicted with tisacel and JCAR014 compared with axicel. Although sensitivity analyses using either positron emission tomography- or computed tomography-based response criteria also suggested higher efficacy of axicel over JCAR014, the impact of tisacel vs axicel became undetermined. Higher preleukapheresis LDH, largest lesion diameter, and lower ALC were independently associated with lower odds of CR. We conclude that CD19 CAR T-cell product type independently impacts toxicity and efficacy in R/R aggressive B-NHL patients.


Subject(s)
Immunotherapy, Adoptive , Lymphoma, B-Cell , Antigens, CD19 , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Cytokine Release Syndrome , Humans , Lymphoma, B-Cell/therapy , Receptors, Chimeric Antigen , Retrospective Studies , T-Lymphocytes
7.
Lancet Oncol ; 24(7): 811-822, 2023 07.
Article in English | MEDLINE | ID: mdl-37414012

ABSTRACT

BACKGROUND: γ-Secretase inhibitors (GSIs) increase B cell maturation antigen (BCMA) density on malignant plasma cells and enhance antitumour activity of BCMA chimeric antigen receptor (CAR) T cells in preclinical models. We aimed to evaluate the safety and identify the recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat (LY3039478) for individuals with relapsed or refractory multiple myeloma. METHODS: We conducted a phase 1, first-in-human trial combining crenigacestat with BCMA CAR T-cells at a single cancer centre in Seattle, WA, USA. We included individuals aged 21 years or older with relapsed or refractory multiple myeloma, previous autologous stem-cell transplant or persistent disease after more than four cycles of induction therapy, and Eastern Cooperative Oncology Group performance status of 0-2, regardless of previous BCMA-targeted therapy. To assess the effect of the GSI on BCMA surface density on bone marrow plasma cells, participants received GSI during a pretreatment run-in, consisting of three doses administered 48 h apart. BCMA CAR T cells were infused at doses of 50 × 106 CAR T cells, 150 × 106 CAR T cells, 300 × 106 CAR T cells, and 450 × 106 CAR T cells (total cell dose), in combination with the 25 mg crenigacestat dosed three times a week for up to nine doses. The primary endpoints were the safety and recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat, an oral GSI. This study is registered with ClinicalTrials.gov, NCT03502577, and has met accrual goals. FINDINGS: 19 participants were enrolled between June 1, 2018, and March 1, 2021, and one participant did not proceed with BCMA CAR T-cell infusion. 18 participants (eight [44%] men and ten [56%] women) with multiple myeloma received treatment between July 11, 2018, and April 14, 2021, with a median follow up of 36 months (95% CI 26 to not reached). The most common non-haematological adverse events of grade 3 or higher were hypophosphataemia in 14 (78%) participants, fatigue in 11 (61%), hypocalcaemia in nine (50%), and hypertension in seven (39%). Two deaths reported outside of the 28-day adverse event collection window were related to treatment. Participants were treated at doses up to 450 × 106 CAR+ cells, and the recommended phase 2 dose was not reached. INTERPRETATIONS: Combining a GSI with BCMA CAR T cells appears to be well tolerated, and crenigacestat increases target antigen density. Deep responses were observed among heavily pretreated participants with multiple myeloma who had previously received BCMA-targeted therapy and those who were naive to previous BCMA-targeted therapy. Further study of GSIs given with BCMA-targeted therapeutics is warranted in clinical trials. FUNDING: Juno Therapeutics-a Bristol Myers Squibb company and the National Institutes of Health.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Male , Humans , Female , Multiple Myeloma/drug therapy , Amyloid Precursor Protein Secretases/therapeutic use , B-Cell Maturation Antigen , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes
8.
Am J Transplant ; 23(3): 416-422, 2023 03.
Article in English | MEDLINE | ID: mdl-36748802

ABSTRACT

Antibodies against foreign human leukocyte antigen (HLA) molecules are barriers to successful organ transplantation. B cell-depleting treatments are used to reduce anti-HLA antibodies but have limited efficacy. We hypothesized that the primary source for anti-HLA antibodies is long-lived plasma cells, which are ineffectively targeted by B cell depletion. To study this, we screened for anti-HLA antibodies in a prospectively enrolled cohort of 49 patients who received chimeric antigen receptor T-cell therapy (CARTx), targeting naïve and memory B cells (CD19-targeted, n = 21) or plasma cells (BCMA-targeted, n = 28) for hematologic malignancies. Longitudinal samples were collected before and up to 1 year after CARTx. All individuals were in sustained remission. We identified 4 participants with anti-HLA antibodies before CD19-CARTx. Despite B cell depletion, anti-HLA antibodies and calculated panel reactive antibody scores were stable for 1 year after CD19-CARTx. Only 1 BCMA-CARTx recipient had pre-CARTx low-level anti-HLA antibodies, with no follow-up samples available. These data implicate CD19neg long-lived plasma cells as an important source for anti-HLA antibodies, a model supported by infrequent HLA sensitization in BCMA-CARTx subjects receiving previous plasma cell-targeted therapies. Thus, plasma cell-targeted therapies may be more effective against HLA antibodies, thereby enabling improved access to organ transplantation and rejection management.


Subject(s)
Hematologic Neoplasms , Immunotherapy, Adoptive , Humans , B-Cell Maturation Antigen , Antigens, CD19 , B-Lymphocytes
9.
Lancet ; 399(10343): 2294-2308, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717989

ABSTRACT

BACKGROUND: Patients with large B-cell lymphoma (LBCL) primary refractory to or relapsed within 12 months of first-line therapy are at high risk for poor outcomes with current standard of care, platinum-based salvage immunochemotherapy and autologous haematopoietic stem cell transplantation (HSCT). Lisocabtagene maraleucel (liso-cel), an autologous, CD19-directed chimeric antigen receptor (CAR) T-cell therapy, has previously demonstrated efficacy and manageable safety in third-line or later LBCL. In this Article, we report a prespecified interim analysis of liso-cel versus standard of care as second-line treatment for primary refractory or early relapsed (within 12 months after response to initial therapy) LBCL. METHODS: TRANSFORM is a global, phase 3 study, conducted in 47 sites in the USA, Europe, and Japan, comparing liso-cel with standard of care as second-line therapy in patients with primary refractory or early (≤12 months) relapsed LBCL. Adults aged 18-75 years, Eastern Cooperative Oncology Group performance status score of 1 or less, adequate organ function, PET-positive disease per Lugano 2014 criteria, and candidates for autologous HSCT were randomly assigned (1:1), by use of interactive response technology, to liso-cel (100 × 106 CAR+ T cells intravenously) or standard of care. Standard of care consisted of three cycles of salvage immunochemotherapy delivered intravenously-R-DHAP (rituximab 375 mg/m2 on day 1, dexamethasone 40 mg on days 1-4, two infusions of cytarabine 2000 mg/m2 on day 2, and cisplatin 100 mg/m2 on day 1), R-ICE (rituximab 375 mg/m2 on day 1, ifosfamide 5000 mg/m2 on day 2, etoposide 100 mg/m2 on days 1-3, and carboplatin area under the curve 5 [maximum dose of 800 mg] on day 2), or R-GDP (rituximab 375 mg/m2 on day 1, dexamethasone 40 mg on days 1-4, gemcitabine 1000 mg/m2 on days 1 and 8, and cisplatin 75 mg/m2 on day 1)-followed by high-dose chemotherapy and autologous HSCT in responders. Primary endpoint was event-free survival, with response assessments by an independent review committee per Lugano 2014 criteria. Efficacy was assessed per intention-to-treat (ie, all randomly assigned patients) and safety in patients who received any treatment. This trial is registered with ClinicalTrials.gov, NCT03575351, and is ongoing. FINDINGS: Between Oct 23, 2018, and Dec 8, 2020, 232 patients were screened and 184 were assigned to the liso-cel (n=92) or standard of care (n=92) groups. At the data cutoff for this interim analysis, March 8, 2021, the median follow-up was 6·2 months (IQR 4·4-11·5). Median event-free survival was significantly improved in the liso-cel group (10·1 months [95% CI 6·1-not reached]) compared with the standard-of-care group (2·3 months [2·2-4·3]; stratified hazard ratio 0·35; 95% CI 0·23-0·53; stratified Cox proportional hazards model one-sided p<0·0001). The most common grade 3 or worse adverse events were neutropenia (74 [80%] of 92 patients in the liso-cel group vs 46 [51%] of 91 patients in the standard-of-care group), anaemia (45 [49%] vs 45 [49%]), thrombocytopenia (45 [49%] vs 58 [64%]), and prolonged cytopenia (40 [43%] vs three [3%]). Grade 3 cytokine release syndrome and neurological events, which are associated with CAR T-cell therapy, occurred in one (1%) and four (4%) of 92 patients in the liso-cel group, respectively (no grade 4 or 5 events). Serious treatment-emergent adverse events were reported in 44 (48%) patients in the liso-cel group and 44 (48%) in the standard-of-care group. No new liso-cel safety concerns were identified in the second-line setting. There were no treatment-related deaths in the liso-cel group and one treatment-related death due to sepsis in the standard-of-care group. INTERPRETATION: These results support liso-cel as a new second-line treatment recommendation in patients with early relapsed or refractory LBCL. FUNDING: Celgene, a Bristol-Myers Squibb Company.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, Large B-Cell, Diffuse , Thrombocytopenia , Adult , Antineoplastic Combined Chemotherapy Protocols , Cisplatin , Dexamethasone , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Rituximab/therapeutic use , Standard of Care , Thrombocytopenia/drug therapy , Transplantation, Autologous
10.
Blood ; 137(3): 323-335, 2021 01 21.
Article in English | MEDLINE | ID: mdl-32967009

ABSTRACT

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet, CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (acute lymphoblastic leukemia [ALL], n = 14; chronic lymphocytic leukemia [CLL], n = 9; non-Hodgkin lymphoma [NHL], n = 21) who received CART2 on a phase 1/2 trial (NCT01865617) at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 cytokine release syndrome, 9%; grade ≥3 neurotoxicity, 11%). After CART2, complete response (CR) was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before the first CAR T-cell infusion (CART1) and an increase in the CART2 dose compared with CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received cyclophosphamide and fludarabine (Cy-Flu) lymphodepletion before CART1 and a higher CART2 compared with CART1 cell dose. The identification of 2 modifiable pretreatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


Subject(s)
Antigens, CD19/metabolism , Immunotherapy, Adoptive , Leukemia, B-Cell/therapy , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Lymphoma, Non-Hodgkin/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adult , Aged , Cell Proliferation , Cyclophosphamide/therapeutic use , Cytokine Release Syndrome/complications , Female , Humans , Leukemia, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphoma, Non-Hodgkin/immunology , Male , Middle Aged , Multivariate Analysis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Progression-Free Survival , T-Lymphocytes/immunology , Treatment Outcome , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
11.
Acta Haematol ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37708877

ABSTRACT

INTRODUCTION: The success of autologous stem cell transplantation (ASCT) for treating non-Hodgkin's lymphoma (NHL) is limited by its high relapse rates. To reduce the risk of relapse, additional maintenance therapy can be added post-transplant. In a non-transplant setting at the time of initiation of this study, both bortezomib and vorinostat had been studied alone or in combination for some NHL histology and showed some clinical activity. At our center, this combination therapy post-transplant for Multiple Myeloma (MM) showed acceptable toxicity. Therefore, it seemed reasonable to study this combination therapy post-ASCT for NHL. METHODS: NHL patients underwent conditioning for ASCT with rituximab, carmustine, etoposide, cytarabine, melphalan (R-BEAM)/carmustine, etoposide, cytarabine, melphalan (BEAM). After recovery from the acute transplant-related toxicity, combination therapy with IV bortezomib and oral vorinostat (BV) was started and was given for a total of 12 (28-day) cycles. RESULTS: Nineteen patients received BV post ASCT. The most common toxicities were hematologic, gastrointestinal, metabolic, fatigue and peripheral neuropathy. With a median follow-up of 10.3 years, 11 patients (58%) are alive without disease progression and 12 patients (63%) are alive. CONCLUSIONS: BV can be given post-ASCT for NHL and produces excellent disease-free and overall survival rates.

12.
Lancet Oncol ; 23(1): 91-103, 2022 01.
Article in English | MEDLINE | ID: mdl-34895487

ABSTRACT

BACKGROUND: Most patients with advanced-stage indolent non-Hodgkin lymphoma have multiple relapses. We assessed axicabtagene ciloleucel autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy in relapsed or refractory indolent non-Hodgkin lymphoma. METHODS: ZUMA-5 is a single-arm, multicentre, phase 2 trial being conducted at 15 medical cancer centres in the USA and two medical cancer centres in France. Patients were eligible if they were aged 18 years or older, with histologically confirmed indolent non-Hodgkin lymphoma (follicular lymphoma or marginal zone lymphoma), had relapsed or refractory disease, previously had two or more lines of therapy (including an anti-CD20 monoclonal antibody with an alkylating agent), and an Eastern Cooperative Oncology Group performance score of 0 or 1. Patients underwent leukapheresis and received conditioning chemotherapy (cyclophosphamide at 500 mg/m2 per day and fludarabine at 30 mg/m2 per day on days -5, -4, and -3) followed by a single infusion of axicabtagene ciloleucel (2 × 106 CAR T cells per kg) on day 0. The primary endpoint was overall response rate (complete response and partial response) assessed by an independent review committee per Lugano classification. The primary activity analysis was done after at least 80 treated patients with follicular lymphoma had been followed up for at least 12 months after the first response assessment at week 4 after infusion. The primary analyses were done in the per-protocol population (ie, eligible patients with follicular lymphoma who had 12 months of follow-up after the first response assessment and eligible patients with marginal zone lymphoma who had at least 4 weeks of follow-up after infusion of axicabtagene ciloleucel). Safety analyses were done in patients who received an infusion of axicabtagene ciloleucel. This study is registered with ClinicalTrials.gov, NCT03105336, and is closed to accrual. FINDINGS: Between June 20, 2017, and July 16, 2020, 153 patients were enrolled and underwent leukapheresis, and axicabtagene ciloleucel was successfully manufactured for all enrolled patients. As of data cutoff (Sept 14, 2020), 148 patients had received an infusion of axicabtagene ciloleucel (124 [84%] who had follicular lymphoma and 24 [16%] who had marginal zone lymphoma). The median follow-up for the primary analysis was 17·5 months (IQR 14·1-22·6). Among patients who were eligible for the primary analysis (n=104, of whom 84 had follicular lymphoma and 20 had marginal zone lymphoma), 96 (92%; 95% CI 85-97) had an overall response and 77 (74%) had a complete response. The most common grade 3 or worse adverse events were cytopenias (104 [70%] of 148 patients) and infections (26 [18%]). Grade 3 or worse cytokine release syndrome occurred in ten (7%) patients and grade 3 or 4 neurological events occurred in 28 (19%) patients. Serious adverse events (any grade) occurred in 74 (50%) patients. Deaths due to adverse events occurred in four (3%) patients, one of which was deemed to be treatment-related (multisystem organ failure). INTERPRETATION: Axicabtagene ciloleucel showed high rates of durable responses and had a manageable safety profile in patients with relapsed or refractory indolent non-Hodgkin lymphoma. FUNDING: Kite, a Gilead Company.


Subject(s)
Biological Products/therapeutic use , Lymphoma, Non-Hodgkin/drug therapy , Aged , Biological Products/adverse effects , Female , Humans , Immunotherapy, Adoptive , Male , Middle Aged , Recurrence
13.
J Cell Mol Med ; 26(24): 5976-5983, 2022 12.
Article in English | MEDLINE | ID: mdl-36453136

ABSTRACT

Chimeric antigen receptor T-cell (CAR T) therapy has shown promising efficacy in relapsed and refractory diffuse large B cell lymphoma (DLBCL). While most patients undergo CAR T infusion with active disease, the impact of some clinical variables, such as responsiveness to the pre-CAR T chemotherapy on the response to CAR T, is unknown. In this single-institution study, we studied the impact of several pre-CAR T variables on the post-CAR outcomes. Sixty patients underwent apheresis for axicabtagene-ciloleucel (axi-cel) and 42 of them (70.0%) had primary refractory disease. Bridging therapy between apheresis and lymphodepletion was given in 34 patients (56.7%). After axi-cel, the overall response rate was 63.3%. Responsiveness to the immediate pre-CAR T therapy did not show a significant association with response to axi-cel, progression-free (PFS) or overall (OS) survival. Multivariable analysis determined that bulky disease before lymphodepletion was independently associated with inferior outcomes, and patients that presented with high-burden disease unresponsive to immediate pre-CAR T therapy had a dismal outcome. This data supports proceeding with treatment in CAR T candidates regardless of their response to immediate pre-CAR T therapy. Interim therapeutic interventions should be considered in patients who have known risk factors for poor outcomes (bulky disease, high LDH).


Subject(s)
Biological Products , Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Humans , Antigens, CD19 , Immunotherapy, Adoptive/adverse effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , T-Lymphocytes
14.
Blood ; 136(13): 1499-1506, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32603426

ABSTRACT

This trial aimed to evaluate the efficacy of sirolimus in addition to cyclosporine (CSP) and mycophenolate mofetil (MMF) for graft-versus-host disease (GVHD) prophylaxis after nonmyeloablative conditioning for HLA class I or II mismatched hematopoietic cell transplantation (HCT). Eligible patients had hematologic malignancies treatable by allogeneic HCT. Conditioning consisted of fludarabine (90 mg/m2) and 2 to 3 Gy total body irradiation. GVHD prophylaxis comprised cyclosporine, mycophenolate mofetil, and sirolimus. The primary objective was to determine whether the cumulative incidence of grade 2 to 4 acute GVHD could be reduced to <70% in HLA class I or II mismatched HCT. The study was closed on December 20, 2018. Seventy-seven participants were recruited between April 14, 2011, and December 12, 2018, of whom 76 completed the study intervention. Median follow-up was 47 months (range, 4-94 months). The cumulative incidence of grade 2 to 4 acute GVHD at day 100 was 36% (95% confidence interval [CI], 25-46), meeting the primary end point. The cumulative incidence of nonrelapse morality, relapse/progression, and overall survival was 18% (95% CI, 9-27), 30% (interquartile range, 19-40), and 62% (95% CI, 50-73) after 4 years. In conclusion, the addition of sirolimus to cyclosporine and mycophenolate mofetil resulted in a lower incidence of acute GVHD, thus translating into superior overall survival compared with historical results. This trial was registered at www.clinicaltrials.gov as #NCT01251575.


Subject(s)
Cyclosporine/therapeutic use , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation , Immunosuppressive Agents/therapeutic use , Mycophenolic Acid/therapeutic use , Sirolimus/therapeutic use , Aged , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Incidence , Male , Middle Aged , Tissue Donors , Transplantation, Homologous/adverse effects , Transplantation, Homologous/methods
15.
Blood ; 135(19): 1650-1660, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32076701

ABSTRACT

We previously reported durable responses in relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) patients treated with CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell immunotherapy after ibrutinib failure. Because preclinical studies showed that ibrutinib could improve CAR T cell-antitumor efficacy and reduce cytokine release syndrome (CRS), we conducted a pilot study to evaluate the safety and feasibility of administering ibrutinib concurrently with CD19 CAR T-cell immunotherapy. Nineteen CLL patients were included. The median number of prior therapies was 5, and 17 patients (89%) had high-risk cytogenetics (17p deletion and/or complex karyotype). Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion. CD19 CAR T-cell therapy with concurrent ibrutinib was well tolerated; 13 patients (68%) received ibrutinib as planned without dose reduction. The 4-week overall response rate using 2018 International Workshop on CLL (iwCLL) criteria was 83%, and 61% achieved a minimal residual disease (MRD)-negative marrow response by IGH sequencing. In this subset, the 1-year overall survival and progression-free survival (PFS) probabilities were 86% and 59%, respectively. Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion. The 1-year PFS probabilities in all evaluable patients were 38% and 50% after CD19 CAR T-cell therapy, with and without concurrent ibrutinib, respectively (P = .91). CD19 CAR T cells with concurrent ibrutinib for R/R CLL were well tolerated, with low CRS severity, and led to high rates of MRD-negative response by IGH sequencing.


Subject(s)
Adenine/analogs & derivatives , Antigens, CD19/immunology , Drug Resistance, Neoplasm , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Piperidines/therapeutic use , Receptors, Antigen, T-Cell/immunology , Salvage Therapy , Adenine/therapeutic use , Adult , Aged , Combined Modality Therapy , Feasibility Studies , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Prognosis , Retrospective Studies
16.
Lancet ; 396(10254): 839-852, 2020 09 19.
Article in English | MEDLINE | ID: mdl-32888407

ABSTRACT

BACKGROUND: Lisocabtagene maraleucel (liso-cel) is an autologous, CD19-directed, chimeric antigen receptor (CAR) T-cell product. We aimed to assess the activity and safety of liso-cel in patients with relapsed or refractory large B-cell lymphomas. METHODS: We did a seamless design study at 14 cancer centres in the USA. We enrolled adult patients (aged ≥18 years) with relapsed or refractory large B-cell lymphomas. Eligible histological subgroups included diffuse large B-cell lymphoma, high-grade B-cell lymphoma with rearrangements of MYC and either BCL2, BCL6, or both (double-hit or triple-hit lymphoma), diffuse large B-cell lymphoma transformed from any indolent lymphoma, primary mediastinal B-cell lymphoma, and follicular lymphoma grade 3B. Patients were assigned to one of three target dose levels of liso-cel as they were sequentially tested in the trial (50 × 106 CAR+ T cells [one or two doses], 100 × 106 CAR+ T cells, and 150 × 106 CAR+ T cells), which were administered as a sequential infusion of two components (CD8+ and CD4+ CAR+ T cells) at equal target doses. Primary endpoints were adverse events, dose-limiting toxicities, and the objective response rate (assessed per Lugano criteria); endpoints were assessed by an independent review committee in the efficacy-evaluable set (comprising all patients who had confirmed PET-positive disease and received at least one dose of liso-cel). This trial is registered with ClinicalTrials.gov, NCT02631044. FINDINGS: Between Jan 11, 2016, and July 5, 2019, 344 patients underwent leukapheresis for manufacture of CAR+ T cells (liso-cel), of whom 269 patients received at least one dose of liso-cel. Patients had received a median of three (range 1-8) previous lines of systemic treatment, with 260 (97%) patients having had at least two lines. 112 (42%) patients were aged 65 years or older, 181 (67%) had chemotherapy-refractory disease, and seven (3%) had secondary CNS involvement. Median follow-up for overall survival for all 344 patients who had leukapheresis was 18·8 months (95% CI 15·0-19·3). Overall safety and activity of liso-cel did not differ by dose level. The recommended target dose was 100 × 106 CAR+ T cells (50 × 106 CD8+ and 50 × 106 CD4+ CAR+ T cells). Of 256 patients included in the efficacy-evaluable set, an objective response was achieved by 186 (73%, 95% CI 66·8-78·0) patients and a complete response by 136 (53%, 46·8-59·4). The most common grade 3 or worse adverse events were neutropenia in 161 (60%) patients, anaemia in 101 (37%), and thrombocytopenia in 72 (27%). Cytokine release syndrome and neurological events occurred in 113 (42%) and 80 (30%) patients, respectively; grade 3 or worse cytokine release syndrome and neurological events occurred in six (2%) and 27 (10%) patients, respectively. Nine (6%) patients had a dose-limiting toxicity, including one patient who died from diffuse alveolar damage following a dose of 50 × 106 CAR+ T cells. INTERPRETATION: Use of liso-cel resulted in a high objective response rate, with a low incidence of grade 3 or worse cytokine release syndrome and neurological events in patients with relapsed or refractory large B-cell lymphomas, including those with diverse histological subtypes and high-risk features. Liso-cel is under further evaluation at first relapse in large B-cell lymphomas and as a treatment for other relapsed or refractory B-cell malignancies. FUNDING: Juno Therapeutics, a Bristol-Myers Squibb Company.


Subject(s)
Antigens, CD19/therapeutic use , Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , Aged , Aged, 80 and over , Anemia/epidemiology , Antigens, CD19/administration & dosage , Antigens, CD19/adverse effects , Biological Products , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cytokine Release Syndrome/epidemiology , Female , Humans , Immunotherapy, Adoptive/adverse effects , Infusions, Intravenous , Leukapheresis/methods , Lymphoma, Large B-Cell, Diffuse/classification , Lymphoma, Large B-Cell, Diffuse/immunology , Male , Nervous System Diseases/epidemiology , Neutropenia/epidemiology , Recurrence , Safety , Survival Analysis , Thrombocytopenia/epidemiology , Treatment Outcome
17.
Blood ; 134(7): 636-640, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31648294

ABSTRACT

Patients with follicular lymphoma (FL) with early relapse after initial chemoimmunotherapy, refractory disease, or histologic transformation (tFL) have limited progression-free and overall survival. We report efficacy and long-term follow-up of 21 patients with relapsed/refractory (R/R) FL (n = 8) and tFL (n = 13) treated on a phase 1/2 clinical trial with cyclophosphamide and fludarabine lymphodepletion followed by infusion of 2 × 106 CD19-directed chimeric antigen receptor-modified T (CAR-T) cells per kilogram. The complete remission (CR) rates by the Lugano criteria were 88% and 46% for patients with FL and tFL, respectively. All patients with FL who achieved CR remained in remission at a median follow-up of 24 months. The median duration of response for patients with tFL was 10.2 months at a median follow-up of 38 months. Cytokine release syndrome occurred in 50% and 39%, and neurotoxicity in 50% and 23% of patients with FL and tFL, respectively, with no severe adverse events (grade ≥3). No significant differences in CAR-T cell in vivo expansion/persistence were observed between FL and tFL patients. CD19 CAR-T cell immunotherapy is highly effective in adults with clinically aggressive R/R FL with or without transformation, with durable remission in a high proportion of FL patients. This trial was registered at clinicaltrials.gov as #NCT01865617.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphoma, Follicular/therapy , Receptors, Antigen, T-Cell/therapeutic use , Aged , Disease-Free Survival , Female , Follow-Up Studies , Humans , Lymphocyte Depletion/methods , Male , Middle Aged , Remission Induction
18.
Blood ; 133(15): 1652-1663, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30728140

ABSTRACT

Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have produced impressive minimal residual disease-negative (MRD-negative) complete remission (CR) rates in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, the factors associated with durable remissions after CAR T-cell therapy have not been fully elucidated. We studied patients with relapsed/refractory B-ALL enrolled in a phase 1/2 clinical trial evaluating lymphodepletion chemotherapy followed by CD19 CAR T-cell therapy at our institution. Forty-five (85%) of 53 patients who received CD19 CAR T-cell therapy and were evaluable for response achieved MRD-negative CR by high-resolution flow cytometry. With a median follow-up of 30.9 months, event-free survival (EFS) and overall survival (OS) were significantly better in the patients who achieved MRD-negative CR compared with those who did not (median EFS, 7.6 vs 0.8 months; P < .0001; median OS, 20.0 vs 5.0 months; P = .014). In patients who achieved MRD-negative CR by flow cytometry, absence of the index malignant clone by IGH deep sequencing was associated with better EFS (P = .034). Stepwise multivariable modeling in patients achieving MRD-negative CR showed that lower prelymphodepletion lactate dehydrogenase concentration (hazard ratio [HR], 1.38 per 100 U/L increment increase), higher prelymphodepletion platelet count (HR, 0.74 per 50 000/µL increment increase), incorporation of fludarabine into the lymphodepletion regimen (HR, 0.25), and allogeneic hematopoietic cell transplantation (HCT) after CAR T-cell therapy (HR, 0.39) were associated with better EFS. These data allow identification of patients at higher risk of relapse after CAR T-cell immunotherapy who might benefit from consolidation strategies such as allogeneic HCT. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Subject(s)
Antigens, CD19/immunology , Immunotherapy, Adoptive/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Remission Induction/methods , Adult , Disease-Free Survival , Female , Hematopoietic Stem Cell Transplantation , Humans , Lymphocyte Depletion , Male , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Receptors, Chimeric Antigen , Salvage Therapy/methods , Young Adult
19.
Blood ; 133(17): 1876-1887, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30782611

ABSTRACT

Factors associated with durable remission after CD19 chimeric antigen receptor (CAR)-modified T-cell immunotherapy for aggressive B-cell non-Hodgkin lymphoma (NHL) have not been identified. We report multivariable analyses of factors affecting response and progression-free survival (PFS) in patients with aggressive NHL treated with cyclophosphamide and fludarabine lymphodepletion followed by 2 × 106 CD19-directed CAR T cells/kg. The best overall response rate was 51%, with 40% of patients achieving complete remission. The median PFS of patients with aggressive NHL who achieved complete remission was 20.0 months (median follow-up, 26.9 months). Multivariable analysis of clinical and treatment characteristics, serum biomarkers, and CAR T-cell manufacturing and pharmacokinetic data showed that a lower pre-lymphodepletion serum lactate dehydrogenase (LDH) level and a favorable cytokine profile, defined as serum day 0 monocyte chemoattractant protein-1 (MCP-1) and peak interleukin-7 (IL-7) concentrations above the median, were associated with better PFS. MCP-1 and IL-7 concentrations increased after lymphodepletion, and higher intensity of cyclophosphamide and fludarabine lymphodepletion was associated with higher probability of a favorable cytokine profile. PFS was superior in patients who received high-intensity lymphodepletion and achieved a favorable cytokine profile compared with those who received the same intensity of lymphodepletion without achieving a favorable cytokine profile. Even in high-risk patients with pre-lymphodepletion serum LDH levels above normal, a favorable cytokine profile after lymphodepletion was associated with a low risk of a PFS event. Strategies to augment the cytokine response to lymphodepletion could be tested in future studies of CD19 CAR T-cell immunotherapy for aggressive B-cell NHL. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Subject(s)
Antigens, CD19/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell- and Tissue-Based Therapy/methods , Immunotherapy/methods , Lymphocyte Depletion/methods , Lymphoma, Non-Hodgkin/mortality , Receptors, Antigen, T-Cell/immunology , Combined Modality Therapy , Cyclophosphamide/administration & dosage , Female , Follow-Up Studies , Humans , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/pathology , Lymphoma, Non-Hodgkin/therapy , Male , Middle Aged , Prognosis , Survival Rate , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
20.
Haematologica ; 106(6): 1599-1607, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32499241

ABSTRACT

We have used a non-myeloablative conditioning regimen for allogeneic hematopoietic cell transplantation for the past twenty years. During that period, changes in clinical practice have been aimed at reducing morbidity and mortality from infections, organ toxicity, and graft-versus-host disease. We hypothesized that improvements in clinical practice led to better transplantation outcomes over time. From 1997-2017, 1,720 patients with hematologic malignancies received low-dose total body irradiation +/- fludarabine or clofarabine before transplantation from HLA-matched sibling or unrelated donors, followed by mycophenolate mofetil and a calcineurin inhibitor ± sirolimus. We compared outcomes in three cohorts by year of transplantation: 1997 +/- 2003 (n=562), 2004 +/- 2009 (n=594), and 2010 +/- 2017 (n=564). The proportion of patients ≥60 years old increased from 27% in 1997 +/- 2003 to 56% in 2010-2017, and with scores from the Hematopoietic Cell Transplantation Comborbidity Index of ≥3 increased from 25% in 1997 +/- 2003 to 45% in 2010 +/- 2017. Use of unrelated donors increased from 34% in 1997 +/- 2003 to 65% in 2010-2017. When outcomes from 2004 +/- 2009 and 2010-2017 were compared to 1997 +/- 2003, improvements were noted in overall survival (P=.0001 for 2004-2009 and P <.0001 for 2010-2017), profression-free survival (P=.002 for 2004-2009 and P <.0001 for 2010 +/- 2017), non-relapse mortality (P<.0001 for 2004 +/- 2009 and P <.0001 for 2010 +/- 2017), and in rates of grades 2 +/- 4 acute and chronic graft-vs.-host disease. For patients with hematologic malignancies who underwent transplantation with non-myeloablative conditioning, outcomes have improved during the past two decades. Trials reported are registered under ClinicalTrials.gov identifiers: NCT00003145, NCT00003196, NCT00003954, NCT00005799, NCT00005801, NCT00005803, NCT00006251, NCT00014235, NCT00027820, NCT00031655, NCT00036738, NCT00045435, NCT00052546, NCT00060424, NCT00075478, NCT00078858, NCT00089011, NCT00104858, NCT00105001, NCT00110058, NCT00397813, NCT00793572, NCT01231412, NCT01252667, NCT01527045.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Hematologic Neoplasms/therapy , Humans , Middle Aged , Neoplasm Recurrence, Local , Transplantation Conditioning , Unrelated Donors
SELECTION OF CITATIONS
SEARCH DETAIL