Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 17(16): e2007221, 2021 04.
Article in English | MEDLINE | ID: mdl-33629821

ABSTRACT

The formation of highly active and stable acetylene hydrochlorination catalysts is of great industrial importance. The successful replacement of the highly toxic mercuric chloride catalyst with gold has led to a flurry of research in this area. One key aspect, which led to the commercialization of the gold catalyst is the use of thiosulphate as a stabilizing ligand. This study investigates the use of a range of sulfur containing compounds as promoters for production of highly active Au/C catalysts. Promotion is observed across a range of metal sulfates, non-metal sulfates, and sulfuric acid treatments. This observed enhancement can be optimized by careful consideration of either pre- or post-treatments, concentration of dopants used, and modification of washing steps. Pre-treatment of the carbon support with sulfuric acid (0.76 m) resulted in the most active Au/C in this series with an acetylene conversion of ≈70% at 200 °C.


Subject(s)
Acetylene , Gold , Carbon , Catalysis , Sulfur
2.
Chem Sci ; 11(27): 7040-7052, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-34122997

ABSTRACT

The replacement of HgCl2/C with Au/C as a catalyst for acetylene hydrochlorination represents a significant reduction in the environmental impact of this industrial process. Under reaction conditions atomically dispersed cationic Au species are the catalytic active site, representing a large-scale application of heterogeneous single-site catalysts. While the metal nuclearity and oxidation state under operating conditions has been investigated in catalysts prepared from aqua regia and thiosulphate, limited studies have focused on the ligand environment surrounding the metal centre. We now report K-edge soft X-ray absorption spectroscopy of the Cl and S ligand species used to stabilise these isolated cationic Au centres in the harsh reaction conditions. We demonstrate the presence of three distinct Cl species in the materials; inorganic Cl-, Au-Cl, and C-Cl and how these species evolve during reaction. Direct evidence of Au-S interactions is confirmed in catalysts prepared using thiosulfate precursors which show high stability towards reduction to inactive metal nanoparticles. This stability was clear during gas switching experiments, where exposure to C2H2 alone did not dramatically alter the Au electronic structure and consequently did not deactivate the thiosulfate catalyst.

3.
Nat Chem ; 12(6): 560-567, 2020 06.
Article in English | MEDLINE | ID: mdl-32284574

ABSTRACT

Single-site catalysts can demonstrate high activity and selectivity in many catalytic reactions. The synthesis of these materials by impregnation from strongly oxidizing aqueous solutions or pH-controlled deposition often leads to low metal loadings or a range of metal species. Here, we demonstrate that simple impregnation of the metal precursors onto activated carbon from a low-boiling-point, low-polarity solvent, such as acetone, results in catalysts with an atomic dispersion of cationic metal species. We show the generality of this method by producing single-site Au, Pd, Ru and Pt catalysts supported on carbon in a facile manner. Single-site Au/C catalysts have previously been validated commercially to produce vinyl chloride, and here we show that this facile synthesis method can produce effective catalysts for acetylene hydrochlorination in the absence of the highly oxidizing acidic solvents previously used.

4.
Chem Commun (Camb) ; 53(86): 11733-11746, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28976511

ABSTRACT

The replacement of mercuric chloride in the production of vinyl chloride monomer, a precursor to PVC, would greatly reduce the environmental impact of this large scale industrial process. The validation of single Au cations supported on carbon as the best catalyst for this reaction at an industrial scale has resulted from nearly 35 years of research. In this feature article we review the development of this catalyst system and address the limitations of a range of characterisation techniques used previously which may induce damage to the fresh catalyst. Following our latest findings using X-ray absorption spectroscopy, we show that under operating conditions the catalyst is atomically dispersed and can be classed as a single site catalyst, we give a perspective on future directions in single atom catalysis.

5.
Science ; 355(6332): 1399-1403, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28360324

ABSTRACT

There remains considerable debate over the active form of gold under operating conditions of a recently validated gold catalyst for acetylene hydrochlorination. We have performed an in situ x-ray absorption fine structure study of gold/carbon (Au/C) catalysts under acetylene hydrochlorination reaction conditions and show that highly active catalysts comprise single-site cationic Au entities whose activity correlates with the ratio of Au(I):Au(III) present. We demonstrate that these Au/C catalysts are supported analogs of single-site homogeneous Au catalysts and propose a mechanism, supported by computational modeling, based on a redox couple of Au(I)-Au(III) species.

SELECTION OF CITATIONS
SEARCH DETAIL