ABSTRACT
During the 10th outbreak of Ebola virus disease in the Democratic Republic of the Congo, the Institut National de Recherche Biomédicale strategically positioned 13 decentralized field laboratories with dedicated equipment to quickly detect cases as the outbreak evolved. The laboratories were operated by national staff, who quickly handed over competencies and skills to local persons to successfully manage future outbreaks. Laboratories analyzed ≈230,000 Ebola diagnostic samples under stringent biosafety measures, documentation, and database management. Field laboratories diversified their activities (diagnosis, chemistry and hematology, survivor follow-up, and genomic sequencing) and shipped 127,993 samples from the field to a biorepository in Kinshasa under good conditions. Deploying decentralized and well-equipped laboratories run by local personnel in at-risk countries for Ebola virus disease outbreaks is an efficient response; all activities are quickly conducted in the field.
Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Ebolavirus/genetics , Laboratories , Democratic Republic of the Congo/epidemiology , Disease OutbreaksABSTRACT
BACKGROUND: Survivors from Ebola virus disease (EVD) may be at the origin of EVD resurgence. METHODS: Simultaneous reactivity to at least 2 Ebola virus or Zaire ebolavirus (EBOV) antigens was detected in 11 of 488 (2.3%; 95% confidence interval [CI], 1.1-4.0) suspected EVD patients who were discharged as negative after 2 consecutive negative tests during the 10th Ebola outbreak in the Democratic Republic of the Congo. RESULTS: After extrapolating the total number of individuals discharged as negative during the entire outbreak, we estimated a total of 1314 additional missed Ebola cases. CONCLUSIONS: These findings emphasize the usefulness of an EBOV serology analysis and the importance of extending epidemic surveillance to clinically suspected cases who were discharged as negative.
Subject(s)
Ebolavirus , Epidemics , Hemorrhagic Fever, Ebola , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Humans , Patient DischargeABSTRACT
Polio-associated paralysis is one of the diseases under national surveillance in the Democratic Republic of the Congo (DRC). Although it has become relatively rare due to control measures, non-polio paralysis cases are still reported and constitute a real problem, especially for etiological diagnosis, which is necessary for better management and response. From September 2022 to April 2023, we investigated acute flaccid paralysis (AFP) cases in Kinshasa following an alert from the Provincial Division of Health. All suspected cases and their close contacts were investigated and sampled. Among the 57 sampled patients, 21 (36.8%) were suspects, and 36 (63.2%) were contacts. We performed several etiological tests available in the laboratory, targeting viruses, including Poliovirus, Influenza virus, SARS-CoV-2, Enterovirus, and arboviruses. No virus material was detected, but the serological test (ELISA) detected antibodies against Chikungunya Virus, i.e., 47.4% (27/57) for IgM and 22.8% (13/57) for IgG. Among suspected cases, we detected 33.3% (7/21) with anti-Chikungunya IgM and 14.3% (3/21) of anti-Chikungunya IgG. These results highlight the importance of enhancing the epidemiological surveillance of Chikungunya.
ABSTRACT
BACKGROUND: During the 2018-20 Ebola virus disease outbreak in the Democratic Republic of the Congo, thousands of patients received unprecedented vaccination, monoclonal antibody (mAb) therapy, or both, leading to a large number of survivors. We aimed to report the clinical, virological, viral genomic, and immunological features of two previously vaccinated and mAb-treated survivors of Ebola virus disease in the Democratic Republic of the Congo who developed second episodes of disease months after initial discharge, ultimately complicated by fatal meningoencephalitis associated with viral persistence. METHODS: In this case report study, we describe the presentation, management, and subsequent investigations of two patients who developed recrudescent Ebola virus disease and subsequent fatal meningoencephalitis. We obtained data from epidemiological databases, Ebola treatment units, survivor programme databases, laboratory datasets, and hospital records. Following national protocols established during the 2018-20 outbreak in the Democratic Republic of the Congo, blood, plasma, and cerebrospinal fluid (CSF) samples were collected during the first and second episodes of Ebola virus disease from both individuals and were analysed by molecular (quantitative RT-PCR and next-generation sequencing) and serological (IgG and IgM ELISA and Luminex assays) techniques. FINDINGS: The total time between the end of the first Ebola virus episode and the onset of the second episode was 342 days for patient 1 and 137 days for patient 2. In both patients, Ebola virus RNA was detected in blood and CSF samples during the second episode of disease. Complete genomes from CSF samples from this relapse episode showed phylogenetic relatedness to the genome sequenced from blood samples collected from the initial infection, confirming in-host persistence of Ebola virus. Serological analysis showed an antigen-specific humoral response with typical IgM and IgG kinetics in patient 1, but an absence of an endogenous adaptive immune response in patient 2. INTERPRETATION: We report the first two cases of fatal meningoencephalitis associated with Ebola virus persistence in two survivors of Ebola virus disease who had received vaccination and mAb-based treatment in the Democratic Republic of the Congo. Our findings highlight the importance of long-term monitoring of survivors, including continued clinical, virological, and immunological profiling, as well as the urgent need for novel therapeutic strategies to prevent and mitigate the individual and public health consequences of Ebola virus persistence. FUNDING: Ministry of Health of the Democratic Republic of the Congo, Institut National de Recherche Biomédicale, Infectious Disease Rapid Response Reserve Fund, US Centers for Disease Control and Prevention, US National Cancer Institute (National Institutes of Health), French National Research Institute for Development, and WHO.
Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Meningoencephalitis , Survivors , Humans , Democratic Republic of the Congo/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Meningoencephalitis/virology , Meningoencephalitis/epidemiology , Meningoencephalitis/immunology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Ebolavirus/genetics , Male , Adult , Fatal Outcome , Female , Antibodies, Viral/blood , Disease Outbreaks , Antibodies, Monoclonal/therapeutic useABSTRACT
BACKGROUND: The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS: We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS: Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION: Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING: WHO and US Centers for Disease Control and Prevention.
Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , United States , Humans , Animals , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Retrospective Studies , Democratic Republic of the Congo/epidemiology , Phylogeny , Bayes Theorem , Ebolavirus/genetics , Disease Outbreaks , Genomics , Zoonoses/epidemiologyABSTRACT
BACKGROUND: Ebola virus disease (EVD) outbreaks have emerged in Central and West Africa. EVD diagnosis relies principally on RT-PCR testing with GeneXpert®, which has logistical and cost restrictions at the peripheral level of the health system. Rapid diagnostic tests (RDTs) would offer a valuable alternative at the point-of-care to reduce the turn-around time, if they show good performance characteristics. We evaluated the performance of four EVD RDTs against the reference standard GeneXpert® on stored EVD positive and negative blood samples collected between 2018 and 2021 from outbreaks in eastern Democratic Republic of the Congo (DRC). METHODS: We conducted a prospective and observational study in the laboratory on QuickNavi-Ebola™, OraQuick® Ebola Rapid Antigen, Coris® EBOLA Ag K-SeT, and Standard® Q Ebola Zaïre Ag RDTs using left-over archived frozen EDTA whole blood samples. We randomly selected 450 positive and 450 negative samples from the EVD biorepositories in DRC, across a range of GeneXpert® cycle threshold values (Ct-values). RDT results were read by three persons and we considered an RDT result as "positive", when it was flagged as positive by at least two out of the three readers. We estimated the sensitivity and specificity through two independent generalized (logistic) linear mixed models (GLMM). FINDINGS: 476 (53%) of 900 samples had a positive GeneXpert Ebola result when retested. The QuickNavi-Ebola™ showed a sensitivity of 56.8% (95% CI 53.6-60.0) and a specificity of 97.5% (95% CI 96.2-98.4), the OraQuick® Ebola Rapid Antigen test displayed 61.6% (95% CI 57.0-65.9) sensitivity and 98.1% (95% CI 96.2-99.1) specificity, the Coris® EBOLA Ag K-SeT showed 25.0% (95% CI 22.3-27.9) sensitivity and 95.9% (95% CI 94.2-97.1) specificity, and the Standard® Q Ebola Zaïre Ag displayed 21.6% (95% CI 18.1-25.7) sensitivity and 99.1% (95% CI 97.4-99.7) specificity. INTERPRETATION: None of the RDTs evaluated approached the "desired or acceptable levels" for sensitivity set out in the WHO target product profile, while all of the tests met the "desired level" for specificity. Nevertheless, the QuickNavi-Ebola™ and OraQuick® Ebola Rapid Antigen Test demonstrated the most favorable profiles, and may be used as frontline tests for triage of suspected-cases while waiting for RT-qPCR confirmatory testing. FUNDING: Institute of Tropical Medicine Antwerp/EDCTP PEAU-EBOV-RDC project.
Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Democratic Republic of the Congo/epidemiology , Ebolavirus/genetics , Rapid Diagnostic Tests , Prospective Studies , Disease Outbreaks , Sensitivity and SpecificityABSTRACT
Background: A paucity of data is available on virologic and biochemical characteristics of paediatric Ebolavirus disease (EVD), compared to adults. Methods: We conducted a retrospective chart review of children (<16 years old) and a comparator group of young adults (16-44 years) from two treatment centres during the 2018-2020 EVD epidemic in Eastern Democratic Republic of the Congo. Statistical methods included chi-squared and Fisher's exact tests (dichotomous and categorical variables), Mann-Whitney U-test (continuous variables), multivariable linear regression (for determinants of admission viral load), linear mixed-effects models (for analysis of longitudinal viral load), and Cox proportional hazard models (to examine risk factors for mortality). Findings: We included 73 children and 234 adults admitted from April to October 2019. Paediatric patients commonly had electrolytes imbalances: hypokalaemia in 26/73 (36%), hyperkalaemia in 38/73 (52%), and hyponatraemia in 54/73 (74%). Hypoglycaemia occurred in 20/73 (27%), acute kidney injury in 43/73 (59%), and rhabdomyolysis in 35/73 (48%). Biochemical abnormalities were detected in a similar proportion of children and adults. The viral load (VL, log10 copies/mL) at admission (7.2 versus 6.5, p=0.0001), the peak viral load (7.5 versus 6.7, p=<0.0001), and the time for viraemia clearance (16 days versus 12 days, p=<0.0001) were significantly different in children. The duration of hospital stay was prolonged in children (20 versus 16 days, p=<0.0001). Risk factors for mortality in children were: VL >7.6 log10copies/mL, alanine transaminase >525 U/L, C-reactive protein >100 mg/L, blood urea nitrogen >7.5 mmol/L, rhabdomyolysis, and.acute kidney injury. Interpretation: Paediatric EVD patients, like adults, experience multiorgan dysfunction with life-threatening electrolyte imbalances, hypoglycaemia, kidney injury, liver injury, and rhabdomyolysis. Paediatric patients have significantly higher VLs throughout the course of EVD than adults. Funding: This study was not funded.
ABSTRACT
BACKGROUND: The Democratic Republic of the Congo has confronted 13 outbreaks of Ebola virus disease since 1976. Rapid diagnostic tests (RDTs) detecting viral antigens have been developed to circumvent difficulties encountered with RT-PCR for diagnosis in remote low-resource settings, but there is still uncertainty about their performance characteristics and usability during outbreaks. We aimed to assess the field performance of three antigen detection RDTs compared with the gold-standard Cepheid GeneXpert Ebola assay results. METHODS: We conducted a retrospective, multicentre observational study using complete and de-identified databases of five mobile laboratories (managed by the Institut National de Recherche Biomédicale) to assess the performance of three Ebola virus disease RDTs (QuickNavi-Ebola, OraQuick Ebola Rapid Antigen Test, and Coris EBOLA Ag K-SeT rapid test) run on blood samples of patients with suspected Ebola virus disease in direct comparison with the Cepheid GeneXpert Ebola assay reference test during the 2018-20 outbreak in the eastern Democratic Republic of the Congo. We estimated the sensitivity and specificity of each test through generalised linear mixed models against the GeneXpert Ebola assay reference test and corrected for cycle threshold value and random site effects. FINDINGS: 719 (7·9%) of 9157 samples had a positive GeneXpert Ebola assay result. The QuickNavi-Ebola RDT had a sensitivity of 87·4% (95% CI 63·6-96·8) around the mean cycle threshold value and a specificity of 99·6% (99·3-99·8). The OraQuick Ebola Rapid Antigen Test had a sensitivity of 57·4% (95% CI 38·8-75·8) and specificity of 98·3% (97·5-99·0), and the Coris EBOLA Ag K-SeT rapid test had a sensitivity of 38·9% (23·0-63·6) against the GeneXpert Ebola assay reference and specificity of 97·4% (85·3-99·6). The QuickNavi-Ebola RDT showed a robust performance with good sensitivity, particularly with increasing viral loads (ie, low cycle threshold values), and specificity. INTERPRETATION: The three RDTs evaluated did not achieve the desired sensitivity and specificity of the WHO target product profile. Although the RDTs cannot triage and rule out Ebola virus infection among clinical suspects, they can still help to sort people with suspected Ebola virus disease into high-risk and low-risk groups while waiting for GeneXpert Ebola assay reference testing. FUNDING: None. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Democratic Republic of the Congo/epidemiology , Diagnostic Tests, Routine , Disease Outbreaks , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Humans , Retrospective Studies , Sensitivity and SpecificityABSTRACT
On 1 August 2018, the Democratic Republic of the Congo (DRC) declared its tenth Ebola virus disease (EVD) outbreak. To aid the epidemiologic response, the Institut National de Recherche Biomédicale (INRB) implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic analysis and dissemination of genomic epidemiologic results to frontline public health workers. We report 744 new genomes sampled between 27 July 2018 and 27 April 2020 generated by this surveillance effort. Together with previously available sequence data (n = 48 genomes), these data represent almost 24% of all laboratory-confirmed Ebola virus (EBOV) infections in DRC in the period analyzed. We inferred spatiotemporal transmission dynamics from the genomic data as new sequences were generated, and disseminated the results to support epidemiologic response efforts. Here we provide an overview of how this genomic surveillance system functioned, present a full phylodynamic analysis of 792 Ebola genomes from the Nord Kivu outbreak and discuss how the genomic surveillance data informed response efforts and public health decision making.