Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Appl Environ Microbiol ; 89(2): e0197022, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688659

ABSTRACT

Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.


Subject(s)
Rhodococcus , Sulfur Compounds , Sulfur Compounds/metabolism , Sulfur/metabolism , Rhodococcus/metabolism , RNA, Messenger/metabolism
2.
Biotechnol Bioeng ; 120(10): 3092-3098, 2023 10.
Article in English | MEDLINE | ID: mdl-37218382

ABSTRACT

Microbial desulfurization has been extensively studied as a promising alternative to the widely applied chemical desulfurization process. Sulfur removal from petroleum and its products becomes essential, as the environmental regulations become increasingly stringent. Rhodococcus qingshengii IGTS8 has gained ground as a naturally occurring model biocatalyst, due to its superior specific activity for desulfurization of dibenzothiophene (DBT). Recalcitrant organic sulfur compounds-DBT included-are preferentially removed by selective carbon-sulfur bond cleavage to avoid a reduction in the calorific value of the fuel. The process, however, still has not reached economically sustainable levels, as certain limitations have been identified. One of those bottlenecks is the repression of catalytic activity caused by ubiquitous sulfur sources such as inorganic sulfate, methionine, or cysteine. Herein, we report an optimized culture medium for wild-type stain IGTS8 that completely alleviates the sulfate-mediated repression of biodesulfurization activity without modification of the natural biocatalyst. Medium C not only promotes growth in the presence of several sulfur sources, including DBT, but also enhances biodesulfurization of resting cells grown in the presence of up to 5 mM sulfate. Based on the above, the present work can be considered as a step towards the development of a more viable commercial biodesulfurization process.


Subject(s)
Rhodococcus , Sulfates , Sulfur Compounds , Sulfur , Rhodococcus/genetics , Phenotype , Biodegradation, Environmental
3.
Molecules ; 25(21)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33139597

ABSTRACT

Intensive research on the use of magnetic nanoparticles for biotechnological applications of microalgae biomass guided the development of proper treatment to successfully incorporate them into these single-cell microorganisms. Protoplasts, as cells lacking a cell wall, are extensively used in plant/microalgae genetic manipulation as well as various biotechnological applications. In this work, a detailed study on the formation of protoplasts from Haematococcus pluvialis with the use of enzymatic and mechanical procedures was performed. The optimization of several parameters affecting the formation of protoplasmic cells and cell recovery was investigated. In the enzymatic treatment, a solution of cellulase was studied at different time points of incubation, whereas in the mechanical treatment, glass beads vortexing was used. Mechanical treatment gave better results in comparison to the enzymatic one. Concerning the cell recovery, after the protoplast formation, it was found to be similar in both methods used; cell viability was not investigated. To enhance the protoplast cell wall reconstruction, different "recovery media" with an organic source of carbon or nitrogen were used. Cell morphology during all treatments was evaluated by electron microscopy. The optimal conditions found for protoplast formation and cell reconstruction were successfully used to produce Haematococcus pluvialis cells with magnetic properties.


Subject(s)
Chlorophyceae , Magnetite Nanoparticles/chemistry , Microalgae , Protoplasts , Biotechnology , Chlorophyceae/chemistry , Chlorophyceae/metabolism , Microalgae/chemistry , Microalgae/metabolism , Protoplasts/chemistry , Protoplasts/metabolism
4.
Bioprocess Biosyst Eng ; 39(10): 1597-609, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27262716

ABSTRACT

3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω â‰ª 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor.


Subject(s)
Alginates/chemistry , Pseudomonas putida/metabolism , alpha-Chlorohydrin/metabolism , Cells, Immobilized/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry
5.
Microb Cell Fact ; 13(1): 43, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24649884

ABSTRACT

BACKGROUND: Fusarium oxysporum is among the few filamentous fungi that have been reported of being able to directly ferment biomass to ethanol in a consolidated bioprocess. Understanding its metabolic pathways and their limitations can provide some insights on the genetic modifications required to enhance its growth and subsequent fermentation capability. In this study, we investigated the hypothesis reported previously that phosphoglucomutase and transaldolase are metabolic bottlenecks in the glycolysis and pentose phosphate pathway of the F. oxysporum metabolism. RESULTS: Both enzymes were homologously overexpressed in F. oxysporum F3 using the gpdA promoter of Aspergillus nidulans for constitutive expression. Transformants were screened for their phosphoglucomutase and transaldolase genes expression levels with northern blot. The selected transformant exhibited high mRNA levels for both genes, as well as higher specific activities of the corresponding enzymes, compared to the wild type. It also displayed more than 20 and 15% higher specific growth rate upon aerobic growth on glucose and xylose, respectively, as carbon sources and 30% higher biomass to xylose yield. The determination of the relative intracellular amino and non-amino organic acid concentrations at the end of growth on glucose revealed higher abundance of most determined metabolites between 1.5- and 3-times in the recombinant strain compared to the wild type. Lower abundance of the determined metabolites of the Krebs cycle and an 68-fold more glutamate were observed at the end of the cultivation, when xylose was used as carbon source. CONCLUSIONS: Homologous overexpression of phosphoglucomutase and transaldolase in F. oxysporum was shown to enhance the growth characteristics of the strain in both xylose and glucose in aerobic conditions. The intracellular metabolites profile indicated how the changes in the metabolome could have resulted in the observed growth characteristics.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Metabolic Engineering , Phosphoglucomutase/metabolism , Transaldolase/metabolism , Aspergillus nidulans/genetics , Bacterial Proteins/genetics , Biomass , Fungal Proteins/genetics , Fusarium/growth & development , Glucose/metabolism , Phosphoglucomutase/genetics , Promoter Regions, Genetic , RNA, Messenger/metabolism , Transaldolase/genetics , Xylose/metabolism
6.
Appl Microbiol Biotechnol ; 97(4): 1457-73, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23318834

ABSTRACT

Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.


Subject(s)
Biotechnology/methods , Ethanol/metabolism , Lignin/metabolism , Neurospora crassa/metabolism , Cellulases/genetics , Cellulases/metabolism , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Neurospora crassa/enzymology , Neurospora crassa/genetics
7.
Materials (Basel) ; 17(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38204044

ABSTRACT

The green synthesis of silver nanoparticles (AgNPs) using the cell-free supernatant of a Haematococcus pluvialis culture (CFS) was implemented in the current study, under illumination conditions. The reduction of Ag+ to AgNPs by the CFS could be described by a pseudo-first-order kinetic equation at the temperature range tested. A high reaction rate during synthesis and stable AgNPs were obtained at 45 °C, while an alkaline pH (pH = 11.0) and a AgNO3 aqueous solution to CFS ratio of 90:10 (v/v) proved to be the most effective conditions in AgNPs synthesis. A metal precursor (AgNO3) at the concentration range tested (1-5 mM) was the limited reactant in the synthesis process. The synthesis of AgNPs was accomplished under static and agitated conditions. Continuous stirring enhanced the rate of reaction but induced aggregation at prolonged incubation times. Zeta potential and polydispersity index measurements indicated stable AgNPs and the majority of AgNPs formation occurred in the monodisperse phase. The X-ray diffraction (XRD) pattern revealed the face-centered cubic structure of the formed AgNPs, while TEM analysis revealed that the AgNPs were of a quasi-spherical shape with a size from 30 to 50 nm. The long-term stability of the AgNPs could be achieved in darkness and at 4 °C. In addition, the synthesized nanoparticles showed antibacterial activity against Escherichia coli.

8.
Foods ; 12(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38231729

ABSTRACT

The aim of this study was to examine the potential enhancement of the antimicrobial activity of edible films, composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%) and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%), with silver nanoparticle (AgNP) incorporationat levels 5, 10 and 15% v/v. According to the results, the AgNP addition led to very high antimicrobial activity of both films, reducing by more than 96% the microbial growth of the Gram-negative bacterium Escherichia coli (E. coli) in all cases. On the other hand, by adding AgNPs to films, their thickness as well as oxygen and water vapor permeability decreased, while their transparency increased. Furthermore, the contribution of these specific edible films to preserve cherries under cold storage was investigated. All edible coatings resulted in an improvement of the fruit properties under consideration, and especially the color difference, hardness and total microbial load.

9.
Appl Microbiol Biotechnol ; 95(2): 541-50, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22573272

ABSTRACT

Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 °C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and ß-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively.


Subject(s)
Cellulose/metabolism , Ethanol/metabolism , Neurospora crassa/growth & development , Neurospora crassa/metabolism , Sorghum/metabolism , Biotransformation , Cellulase/metabolism , Fermentation , Hexoses/metabolism , Pentoses/metabolism , Plant Stems/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , beta-Glucosidase/metabolism
10.
Biomolecules ; 12(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35740915

ABSTRACT

Xylanases have a broad range of applications in agro-industrial processes. In this study, we report on the discovery and characterization of a new thermotolerant GH10 xylanase from Bacillus safensis, designated as BsXyn10. The xylanase gene (bsxyn10) was cloned from Bacillus safensis and expressed in Escherichia coli. The reduced molecular mass of BsXyn10 was 48 kDa upon SDS-PAGE. Bsxyn10 was optimally active at pH 7.0 and 60 °C, stable over a broad range of pH (5.0-8.0), and also revealed tolerance toward different modulators (metal cations, EDTA). The enzyme was active toward various xylans with no activity on the glucose-based polysaccharides. KM, vmax, and kcat for oat spelt xylan hydrolysis were found to be 1.96 g·L-1, 58.6 µmole·min-1·(mg protein)-1, and 49 s-1, respectively. Thermodynamic parameters for oat spelt xylan hydrolysis at 60 °C were ΔS* = -61.9 J·mol-1·K-1, ΔH* = 37.0 kJ·mol-1 and ΔG* = 57.6 kJ·mol-1. BsXyn10 retained high levels of activity at temperatures up to 60 °C. The thermodynamic parameters (ΔH*D, ΔG*D, ΔS*D) for the thermal deactivation of BsXyn10 at a temperature range of 40-80 °C were: 192.5 ≤ ΔH*D ≤ 192.8 kJ·mol-1, 262.1 ≤ ΔS*D ≤ 265.8 J·mol-1·K-1, and 99.9 ≤ ΔG*D ≤ 109.6 kJ·mol-1. The BsXyn10-treated oat spelt xylan manifested the catalytic release of xylooligosaccharides of 2-6 DP, suggesting that BsXyn10 represents a promising candidate biocatalyst appropriate for several biotechnological applications.


Subject(s)
Endo-1,4-beta Xylanases , Xylans , Bacillus , Endo-1,4-beta Xylanases/chemistry , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Substrate Specificity , Temperature , Thermodynamics , Xylans/metabolism
11.
mBio ; 13(4): e0075422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35856606

ABSTRACT

Biodesulfurization is a process that selectively removes sulfur from dibenzothiophene and its derivatives. Several natural biocatalysts harboring the highly conserved desulfurization operon dszABC, which is significantly repressed by methionine, cysteine, and inorganic sulfate, have been isolated. However, the available information on the metabolic regulation of gene expression is still limited. In this study, scarless knockouts of the reverse transsulfuration pathway enzyme genes cbs and metB were constructed in the desulfurizing strain Rhodococcus sp. strain IGTS8. We provide sequence analyses and report the enzymes' involvement in the sulfate- and methionine-dependent repression of biodesulfurization activity. Sulfate addition in the bacterial culture did not repress the desulfurization activity of the Δcbs strain, whereas deletion of metB promoted a significant biodesulfurization activity for sulfate-based growth and an even higher desulfurization activity for methionine-grown cells. In contrast, growth on cysteine completely repressed the desulfurization activity of all strains. Transcript level comparison uncovered a positive effect of cbs and metB gene deletions on dsz gene expression in the presence of sulfate and methionine, but not cysteine, offering insights into a critical role of cystathionine ß-synthase (CßS) and MetB in desulfurization activity regulation. IMPORTANCE Precise genome editing of the model biocatalyst Rhodococcus qingshengii IGTS8 was performed for the first time, more than 3 decades after its initial discovery. We thus gained insight into the regulation of dsz gene expression and biocatalyst activity, depending on the presence of two reverse transsulfuration enzymes, CßS and MetB. Moreover, we observed an enhancement of biodesulfurization capability in the presence of otherwise repressive sulfur sources, such as sulfate and l-methionine. The interconnection of cellular sulfur assimilation strategies was revealed and validated.


Subject(s)
Rhodococcus , Cysteine/metabolism , Methionine/metabolism , Rhodococcus/genetics , Rhodococcus/metabolism , Sulfates/metabolism , Sulfur/metabolism
12.
AIMS Microbiol ; 8(4): 484-506, 2022.
Article in English | MEDLINE | ID: mdl-36694580

ABSTRACT

Sustainable biodesulfurization (BDS) processes require the use of microbial biocatalysts that display high activity against the recalcitrant heterocyclic sulfur compounds and can simultaneously withstand the harsh conditions of contact with petroleum products, inherent to any industrial biphasic BDS system. In this framework, the functional microbial BDS-related diversity in a naturally oil-exposed ecosystem, was examined through a 4,6-dimethyl-dibenzothiophene based enrichment process. Two new Rhodococcus sp. strains were isolated, which during a medium optimization process revealed a significantly enhanced BDS activity profile when compared to the model strain R. qingshengii IGTS8. In biocatalyst stability studies conducted in biphasic mode using partially hydrodesulfurized diesel under various process conditions, the new strains also presented an enhanced stability phenotype. In these studies, it was also demonstrated for all strains, that the BDS activity losses were decoupled from the overall cells' viability, in addition to the fact that the use of whole-broth biocatalyst positively affected BDS performance.

13.
J Fungi (Basel) ; 7(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072339

ABSTRACT

Two novel xylanolytic enzymes, a xylanase and a ß-xylosidase, were simultaneously isolated and characterized from the extracellular medium of Byssochlamys spectabilis ATHUM 8891 (anamorph Paecilomyces variotii ATHUM 8891), grown on Brewer's Spent Grain as a sole carbon source. They represent the first pair of characterized xylanolytic enzymes of the genus Byssochlamys and the first extensively characterized xylanolytic enzymes of the family Thermoascaceae. In contrast to other xylanolytic enzymes isolated from the same family, both enzymes are characterized by exceptional thermostability and stability at low pH values, in addition to activity optima at temperatures around 65 °C and acidic pH values. Applying nano-LC-ESI-MS/MS analysis of the purified SDS-PAGE bands, we sequenced fragments of both proteins. Based on sequence-comparison methods, both proteins appeared conserved within the genus Byssochlamys. Xylanase was classified within Glycoside Hydrolase family 11 (GH 11), while ß-xylosidase in Glycoside Hydrolase family 3 (GH 3). The two enzymes showed a synergistic action against xylan by rapidly transforming almost 40% of birchwood xylan to xylose. The biochemical profile of both enzymes renders them an efficient set of biocatalysts for the hydrolysis of xylan in demanding biorefinery applications.

14.
Plants (Basel) ; 11(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009076

ABSTRACT

Microalgae are used in industrial and pharmaceutical applications. Their performance on biological applications may be improved by their immobilization. This study presents a way of cell immobilization using microalgae carrying magnetic properties. Nannochloropsis oceanica and Scenedasmus almeriensis cells were treated enzymatically (cellulase) and mechanically (glass beads), generating protoplasts as a means of incorporation of magnetic nanoparticles. Scanning electron microscopy images verified the successful cell wall destruction for both of the examined microalgae cells. Subsequently, protoplasts were transformed with magnetic nanoparticles by a continuous electroporation method and then cultured on a magnetic surface. Regeneration of transformed protoplasts was optimized using various organic carbon and amino acid supplements. Both protoplast preparation methods demonstrated similar efficiency. Casamino acids, as source of amino acids, were the most efficient compound for N. oceanica protoplasts regeneration in enzymatic and mechanical treatment, while for S. almeriensis protoplasts regeneration, fructose, as source of organic carbon, was the most effective. Protoplasts transformation efficiency values with magnetic nanoparticles after enzymatic or mechanical treatments for N. oceanica and S. almeriensis were 17.8% and 10.7%, and 18.6% and 15.7%, respectively. Finally, selected magnetic cells were immobilized and grown on a vertical magnetic surface exposed to light and without any supplement.

15.
3 Biotech ; 10(7): 311, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32582508

ABSTRACT

An extracellular acid stable α-amylase from Paecilomyces variotii ATHUM 8891 (PV8891 α-amylase) was purified to homogeneity applying ammonium sulfate fractionation, ion exchange and gel filtration chromatography and exhibited a reduced molecular weight of 75 kDa. The purified enzyme was optimally active at pH 5.0 and 60 °C and stable in acidic pH (3.0-6.0). K m, v max and k cat for starch hydrolysis were found 1.1 g L-1, 58.5 µmole min-1 (mg protein)-1, and 73.1 s-1, respectively. Amylase activity was marginally enhanced by Ca2+ and Fe2+ ions while Cu2+ ions strongly inhibited it. Thermodynamic parameters determined for starch hydrolysis (Ε α, ΔH*, ΔG*, ΔS*, Δ G E - S ∗ and Δ G E - T ∗ ) suggests an effective capacity of PV8891 α-amylase towards starch hydrolysis. Thermal stability of PV8891 α-amylase was assessed at different temperatures (30-80 οC). Thermodynamic parameters ( E a d , ΔH*, ΔG*, ΔS*) as well as the integral activity of a continuous system for starch hydrolysis by the PV8891 α-amylase revealed satisfactory thermostability up to 60 °C. The acidic nature and its satisfactory performance at temperatures lower than the industrially used amylases may represent potential applications of PV8891 α-amylase in starch processing industry.

16.
Plants (Basel) ; 9(5)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456121

ABSTRACT

The effect of iron, manganese, phosphorus and nitrogen on growth and lipid synthesis of the microalgae Nannochloropsis oceanica CCMP1779, as well as their impact on the magnetic harvesting efficiency, are examined under their depriving cell culture conditions. Herein, it is demonstrated that nitrogen and manganese depletion primarily reduced cell growth while phosphorus and iron restriction led to higher dry biomass. Subsequently, the role of those nutrients on fatty acids profile was examined. Phosphorus and nitrogen restriction resulted in lower and higher lipid content, respectively. High amounts of polyunsaturated fatty acids like eicosapentaenoic acid are produced under iron and manganese depletion. Phosphorus deprivation favors monounsaturated fatty acids such as C18:1 and C16:1, while nitrogen restriction favors saturated fatty acid production like C14:0, C16:0 and C18:0. Since the presence/absence of macro- and micro-elements may affect the overall electrostatic charges on the outmost microalgae surface, it was also analyzed how these elements affect the magnetic harvesting efficiency. Results showed that phosphorus deprivation led to the best magnetic harvesting efficiency of N. oceanica cells (93%) as compared to other nutrient starvation as well as standard medium.

17.
Bioresour Technol ; 99(7): 2373-83, 2008 May.
Article in English | MEDLINE | ID: mdl-17604624

ABSTRACT

Orange peels is the principal solid by-product of the citrus processing industry and the disposal of the fresh peels is becoming a major problem to many factories. Dry citrus peels are rich in pectin, cellulose and hemicellulose and may be used as a fermentation substrate. Production of multienzyme preparations containing pectinolytic, cellulolytic and xylanolytic enzymes by the mesophilic fungi Aspergillus niger BTL, Fusarium oxysporum F3, Neurospora crassa DSM 1129 and Penicillium decumbens under solid-state fermentation (SSF) on dry orange peels was enhanced by optimization of initial pH of the culture medium and initial moisture level. Under optimal conditions A. niger BTL was by far the most potent strain in polygalacturonase and pectate lyase, production followed by F. oxysporum F3, N. crassa DSM 1129 and P. decumbens. N. crassa DSM 1129 produced the highest endoglucanase activity and P. decumbens the lowest one. Comparison of xylanase production revealed that A. niger BTL produced the highest activity followed by N. crassa DSM 1129, P. decumbens and F. oxysporum F3. N. crassa DSM 1129 and P. decumbens did not produce any beta-xylosidase activity, while A. niger BTL produced approximately 10 times more beta-xylosidase than F. oxysporum F3. The highest invertase activity was produced by A. niger BTL while the lowest ones by F. oxysporum F3 and P. decumbens. After SSF of the four fungi, under optimal conditions, the fermented substrate was either directly exposed to autohydrolysis or new material was added, and the in situ produced multienzyme systems were successfully used for the partial degradation of orange peels polysaccharides and the liberation of fermentable sugars.


Subject(s)
Citrus , Food Industry , Fungi/enzymology , Multienzyme Complexes/biosynthesis
18.
Bioresour Technol ; 99(17): 8185-92, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18440224

ABSTRACT

The main objective of the present study was to meticulously investigate an inclusive set of physicochemical and handle properties (determined through Kawabata evaluation system) of bioscoured cotton fabrics. The application of a commercial pectinase preparation, Bioprep 3000L, for a range of concentrations and treatment times, could create a pectin-free textile with low wax content. Multiple regression analysis was used to describe the effect of enzymatic process variables on pectin and waxes removal. Comparison of fabrics' properties such as wettability, whiteness, crystallinity index, and dyeing behaviour, confirmed that bioscouring could be as much effective as the conventional alkaline process. Uncovering the relationship between the composition of materials and their physicochemical properties was attempted. The application of higher enzyme concentrations generated fabrics with improved low-stress mechanical properties. Bending and shear rigidity, compressional resilience, as well as, extensibility of enzymatically treated cotton fabrics could be efficiently predicted by means of a single independent variable, the crystallinity index.


Subject(s)
Cotton Fiber , Gossypium/chemistry , Polysaccharide-Lyases/metabolism , Coloring Agents , Compressive Strength , Crystallization , Pectins/metabolism , Shear Strength , Tensile Strength , Waxes/metabolism , Wettability
19.
Enzyme Microb Technol ; 116: 64-71, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29887019

ABSTRACT

The catalytic behavior of a membrane-bound lipolytic enzyme (MBL-Enzyme) from the microalgae Nannochloropsis oceanica CCMP1779 was investigated. The biocatalyst showed maximum activity at 50 °C and pH 7.0, and was stable at pH 7.0 and temperatures from 40 to 60 °C. Half-lives at 60 °C, 70 °C and 80 °C were found 866.38, 150.67 and 85.57 min respectively. Thermal deactivation energy was 68.87 kJ mol-1. The enzyme's enthalpy (ΔΗ*), entropy (ΔS*) and Gibb's free energy (ΔG*) were in the range of 65.86-66.27 kJ mol-1, 132.38-140.64 J mol-1 K-1 and 107.80-115.81 kJ mol-1, respectively. Among p-nitrophenyl esters of fatty acids tested, MBL-Enzyme exhibited the highest hydrolytic activity against p-nitrophenyl palmitate (pNPP). The Km and Vmax values were found 0.051 mM and of 0.054 mmole pNP mg protein-1 min-1, respectively with pNPP as substrate. The presence of Mn2+ increased lipolytic activity by 68.25%, while Fe3+ and Cu2+ ions had the strongest inhibitory effect. MBL-Enzyme was stable in the presence of water miscible (66% of the initial activity in ethanol) and water immiscible (71% of the initial activity in n-octane) solvents. Myristic acid was found to be the most efficient acyl donor in esterification reactions with ethanol. Methanol was the best acyl acceptor among the primary alcohols tested.


Subject(s)
Enzymes/chemistry , Microalgae/enzymology , Stramenopiles/enzymology , Biocatalysis , Cell Membrane/enzymology , Enzyme Stability , Enzymes/metabolism , Esters/chemistry , Ethanol/chemistry , Fatty Acids/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Methanol/chemistry , Microalgae/chemistry , Palmitates/chemistry , Stramenopiles/chemistry , Temperature
20.
Appl Biochem Biotechnol ; 142(1): 29-43, 2007 Jul.
Article in English | MEDLINE | ID: mdl-18025566

ABSTRACT

Two glucose oxidase (GOX) isoforms where purified to electrophoretic homogeneity from the mycelium extract (GOXI) and the extracellular medium (GOXII) of Aspergillus niger BTL cultures. Both enzymes were found to be homodimers with nonreduced molecular masses of 148 and 159 kDa and pI values of 3.7 and 3.6 for GOXI and GOXII, respectively. The substrate specificity and the kinetic characteristics of the two GOX forms, as expressed through their apparent K m values on glucose, as well as pH and T activity optima, were almost identical. The only structural difference between the two enzymes was in their degrees of glycosylation, which were determined equal to 14.1 and 20.8% (w/w) of their molecular masses for GOXI and GOXII, respectively. The above difference in the carbohydrate content between the two enzymes seems to influence their pH and thermal stabilities. GOXII proved to be more stable than GOXI at pH values 2.5, 3.0, 8.0, and 9.0. Half-lives of GOXI at pH 3.0 and 8.0 were 8.9 and 17.5 h, respectively, whereas the corresponding values for GOXII were 13.5 and 28.1 h. As far as the thermal stability is concerned, GOXII was also more thermostable than GOXI as judged by the deactivation constants determined at various temperatures. More specifically, the half-lives of GOXI and GOXII, at 45 degrees C, were 12 and 49 h, respectively. These results suggest A. niger BTL probably possesses a secondary glycosylation mechanism that increases the stability of the excreted GOX.


Subject(s)
Aspergillus niger/enzymology , Biotechnology/methods , Glucose Oxidase/chemistry , Carbohydrates/chemistry , Dimerization , Glucose/chemistry , Glucose Oxidase/metabolism , Glycosylation , Hydrogen-Ion Concentration , Isoelectric Point , Kinetics , Molecular Weight , Mycelium/chemistry , Protein Isoforms , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL