Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Appl Opt ; 56(18): 5274-5294, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-29047582

ABSTRACT

The Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassini's 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2. The instrument, consisting of two interferometers sharing a telescope and a scan mechanism, covers over a factor of 100 in wavelength in the mid and far infrared. It is used to study temperature, composition, structure, and dynamics of the atmospheres of Jupiter, Saturn, and Titan, the rings of Saturn, and surfaces of the icy moons. CIRS has returned a large volume of scientific results, the culmination of over 30 years of instrument development, operation, data calibration, and analysis. As Cassini and CIRS reach the end of their mission in 2017, we expect that archived spectra will be used by scientists for many years to come.

3.
Science ; 305(5690): 1582-6, 2004 Sep 10.
Article in English | MEDLINE | ID: mdl-15319491

ABSTRACT

The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.


Subject(s)
Carbon Dioxide , Hydrocarbons , Hydrogen Cyanide , Jupiter , Acetylene , Atmosphere , Ethane , Extraterrestrial Environment , Spacecraft , Spectrum Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL