Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
Add more filters

Publication year range
1.
Hepatology ; 79(1): 61-78, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-36683360

ABSTRACT

BACKGROUND AND AIMS: Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS: RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating ß-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS: Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Zinc Finger Protein GLI1/metabolism , RNA-Binding Proteins/metabolism , Mitophagy , Neoplastic Stem Cells/metabolism
2.
Mol Phylogenet Evol ; 199: 108164, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084413

ABSTRACT

With 289 known species in 51 genera, the ophidiiform family Ophidiidae together with their relatives from the Carapidae (36 species in eight genera) of the same suborder Ophidioidei dominate the deep sea, but some occur also in shallow water habitats. Despite their high species diversity in the deep sea and wide bathymetric distributions, their phylogenetic relationships and evolution remain unexplored due in part to sampling difficulties. Thanks to the biodiversity exploratory program entitled "Tropical Deep-Sea Benthos" and joint efforts between Taiwan and French teams for sampling from different localities across the Indo-West Pacific over the last two decades, we are able to compile comprehensive datasets for investigations. In this study, 59 samples representing 36 of 59 known ophidioid genera are selected and used to construct a multi-gene dataset to infer the phylogenetic relationships of ophidioid fishes and their relatives. Our results reveal that the Ophidiidae forms a paraphyletic group with respect to the Carapidae. The four main clades of Ophidioidei resolved are the (1) clade comprising species from the subfamily Brotulinae; (2) clade that includes species in the genera Acanthonus and Xyelacyba; (3) clade grouping Hypopleuron caninum with species from the family Carapidae; and (4) clade containing the species in the subfamily Brotulotaenilinae, Neobythitinae (in part), and Ophidiinae. Accordingly, we suggest the following new revisions based on our results and proposed morphological diagnoses. The subfamily Brotulinae should be elevated to the family level. The genera Xyelacyba and probably Tauredophidium (unsampled in this study) should be included in the newly established family Acanthonidae with Acanthonus. The families Carapidae and Ophidiidae are re-defined. Our time-calibrated phylogenetic and ancestral depth reconstructions enable us to clarify the evolutionary history of ophidiiform fishes and infer past patterns of species distributions at different depths. While Ophidiiformes is inferred to have originated in shallow waters around 96.25 million years ago (Mya), the common ancestor to the Ophidioidei is inferred to have invaded the deep sea around 90.22 Mya, the dates coinciding with the global anoxic event of the OAE2. The observed bathymetric distribution patterns in Ophidioidei most likely point to the mesopelagic zone as the center of origin and diversification. This was followed by multiple events of depth transitions or range expansions towards either shallower waters or greater depth zones, which were likely triggered by past climate changes during the Paleogene-Neogene.


Subject(s)
Phylogeny , Animals , Eels/genetics , Eels/classification , Bayes Theorem , Sequence Analysis, DNA , DNA, Mitochondrial/genetics , Biological Evolution , Likelihood Functions
3.
Hepatobiliary Pancreat Dis Int ; 23(3): 257-264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-37903711

ABSTRACT

BACKGROUND: Our clinical practice of laparoscopic liver resection (LLR) had achieved better short-term and long-term benefits for patients with hepatocellular carcinoma (HCC) over open liver resection (OLR), but the underlying mechanisms are not clear. This study was to find out whether systemic inflammation plays an important role. METHODS: A total of 103 patients with early-stage HCC under liver resection were enrolled (LLR group, n = 53; OLR group, n = 50). The expression of 9 inflammatory cytokines in patients at preoperation, postoperative day 1 (POD1) and POD7 was quantified by Luminex Multiplex assay. The relationships of the cytokines and the postoperative outcomes were compared between LLR and OLR. RESULTS: Seven of the circulating cytokines were found to be significantly upregulated on POD1 after LLR or OLR compared to their preoperative levels. Compared to OLR, the POD1 levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1) in the LLR group were significantly lower. Higher POD1 levels of these cytokines were significantly correlated with longer operative time and higher volume of blood loss during operation. The levels of these cytokines were positively associated with postoperative liver injury, and the length of hospital stay. Importantly, a high level of IL-6 at POD1 was a risk factor for HCC recurrence and poor disease-free survival after liver resection. CONCLUSIONS: Significantly lower level of GM-CSF, IL-6, IL-8, and MCP-1 after liver resection represented a milder systemic inflammation which might be an important mechanism to offer better short-term and long-term outcomes in LLR over OLR.


Subject(s)
Carcinoma, Hepatocellular , Laparoscopy , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Granulocyte-Macrophage Colony-Stimulating Factor , Liver Neoplasms/pathology , Cytokines , Interleukin-6 , Interleukin-8 , Retrospective Studies , Postoperative Complications/etiology , Hepatectomy/adverse effects , Laparoscopy/adverse effects , Inflammation , Length of Stay
4.
Gut ; 72(8): 1568-1580, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36450387

ABSTRACT

OBJECTIVE: Immune checkpoint blockade (ICB) has improved cancer treatment, yet why most hepatocellular carcinoma (HCC) patients are resistant to PD-1 ICB remains elusive. Here, we elucidated the role of a programmed cell death protein 1 (PD-1) isoform, Δ42PD-1, in HCC progression and resistance to nivolumab ICB. DESIGN: We investigated 74 HCC patients in three cohorts, including 41 untreated, 28 treated with nivolumab and 5 treated with pembrolizumab. Peripheral blood mononuclear cells from blood samples and tumour infiltrating lymphocytes from tumour tissues were isolated for immunophenotyping. The functional significance of Δ42PD-1 was explored by single-cell RNA sequencing analysis and validated by functional and mechanistic studies. The immunotherapeutic efficacy of Δ42PD-1 monoclonal antibody was determined in HCC humanised mouse models. RESULTS: We found distinct T cell subsets, which did not express PD-1 but expressed its isoform Δ42PD-1, accounting for up to 71% of cytotoxic T lymphocytes in untreated HCC patients. Δ42PD-1+ T cells were tumour-infiltrating and correlated positively with HCC severity. Moreover, they were more exhausted than PD-1+ T cells by single T cell and functional analysis. HCC patients treated with anti-PD-1 ICB showed effective PD-1 blockade but increased frequencies of Δ42PD-1+ T cells over time especially in patients with progressive disease. Tumour-infiltrated Δ42PD-1+ T cells likely sustained HCC through toll-like receptors-4-signalling for tumourigenesis. Anti-Δ42PD-1 antibody, but not nivolumab, inhibited tumour growth in three murine HCC models. CONCLUSION: Our findings not only revealed a mechanism underlying resistance to PD-1 ICB but also identified anti-Δ42PD-1 antibody for HCC immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Leukocytes, Mononuclear , Immunosuppression Therapy , Immune Tolerance , Immunotherapy , Nivolumab/therapeutic use , CD8-Positive T-Lymphocytes
5.
Small ; 19(40): e2301723, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37282788

ABSTRACT

A photo- and electro-thermal film can convert sunlight and electricity into heat to solve icing problems. Combination of them provides an efficient strategy for all-day anti-/de-icing. However, only opaque surfaces have been reported, due to the mutual exclusiveness between photon absorption and transmission. Herein, a highly transparent and scalable solution-processed photo-electro-thermal film is reported, which exhibits an ultra-broadband selective spectrum to separate the visible light from sunlight and a countertrend suppress of emission in longer wavelength. It absorbs ≈ 85% of invisible sunlight (ultraviolet and near-infrared) for light-heat conversion, meanwhile maintains luminous transmittance > 70%. The reflection of mid-infrared leads to low emissivity (0.41), which further preserves heat on the surface for anti-/de-icing purpose. This ultra-broadband selectivity enables temperature elevation > 40 °C under 1-sun illumination and the mutual support between photo-thermal and electro-thermal effects contributes to > 50% saving of electrical consumption under weak solar exposure (0.4-sun) for maintaining unfrozen surfaces at -35 °C environment. The reverberation from photo-electro-thermal and super-hydrophobic effects illustrates a lubricating removal of grown ice in short time (< 120 s). The self-cleaning ability and the durability under mechanical, electrical, optical, and thermal stresses render the film stable for long-term usage in all-day anti-/de-icing applications.

6.
Environ Sci Technol ; 57(44): 17110-17122, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37851929

ABSTRACT

Organic ultraviolet filters (OUVFs) are extensively released into aquatic environments, where they undergo complex phototransformation. However, there is little knowledge regarding their transformation products (TPs) and associated endocrine disruption potentials. In the present study, we characterized the chemical and toxicological profiles of TPs for two common OUVFs, oxybenzone (BP3) and ethylhexyl methoxycinnamate (EHMC), by photooxidation under environmentally relevant conditions. It is hypothesized that TPs of the tested OUVFs will show varied estrogenicity at different reaction times. High-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) identified 17 TPs of 7 m/z for BP-3 and 13 TPs of 8 m/z for EHMC at confidence levels ≤2. Five novel TPs of 2 m/z were reported for the first time with structure-diagnostic MS/MS spectra. Estrogenicity assessment using the MCF-7-luc cell line showed discrepant estrogenic activities exhibited by OUVF-TPs over time. Specifically, BP3-TPs exhibited significantly greater estrogenicity than the parent at several reaction times, whereas EHMC-TPs displayed fluctuating estrogenicity with a declining trend. Correlation analysis coupled with molecular docking simulations further suggested several TPs of BP3 as potential endocrine disruptive compounds. These findings underscore the necessity of considering mixtures during chemical testing and risk assessment and highlight the potentially greater risks associated with post-transformation cocktails.


Subject(s)
Tandem Mass Spectrometry , Water Pollutants, Chemical , Tandem Mass Spectrometry/methods , Ultraviolet Rays , Molecular Docking Simulation , Water Pollutants, Chemical/analysis
7.
J Gastroenterol Hepatol ; 38(8): 1227-1232, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37353915

ABSTRACT

Alcoholic liver disease (ALD) has become the most common indication for liver transplantation in Western countries, and its incidence is rapidly increasing in East Asia. Alcohol abstinence remains the standard of care for promoting liver transplantation for ALD and for preventing posttransplant graft loss. However, efficient monitoring methods are still being developed due to the limitations of traditional biomarkers, interviews, and questionnaires. The development of alcohol biomarkers has shifted from detecting alcohol and methanol to indirect byproducts, and to current mid-term and long-term direct alcohol metabolites, which provide higher accuracy and cover almost all types of alcohol relapse detection. However, in most clinical studies, biomarkers are used and validated in healthy individuals and alcohol use disorder (AUD) patients and for pretransplant evaluations. The evidence for their use in posttransplant abstinence monitoring is still lacking, but it is crucial for early detection of alcohol relapse and initiating intervention. This review aims to summarize the current evidence of the use of biomarkers for monitoring sobriety and alcohol relapse after liver transplantation, as well as to cover the diagnostic accuracy, detection window, and optimal multidisciplinary strategies.


Subject(s)
Liver Diseases, Alcoholic , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Liver Diseases, Alcoholic/diagnosis , Alcohol Drinking/adverse effects , Ethanol , Biomarkers , Recurrence
8.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175922

ABSTRACT

The application of steatotic liver graft has been increased significantly due to the severe donor shortage and prevalence of non-alcoholic fatty liver disease. However, steatotic donor livers are vulnerable to acute phase inflammatory injury, which may result in cancer recurrence. Alternative splicing events (ASEs) are critical for diverse transcriptional variants in hepatocellular carcinoma (HCC). Here, we aimed to depict the landscape of ASEs, as well as to identify the differential ASEs in steatotic liver graft and their association with tumor recurrence after transplantation. The overall portrait of intragraft transcripts and ASEs were elucidated through RNA sequencing with the liver graft biopsies from patients and rat transplant models. Various differential ASEs were identified in steatotic liver grafts. CYP2E1, ADH1A, CYP2C8, ADH1C, and HGD, as corresponding genes to the common pathways involved differential ASEs in human and rats, were significantly associated with HCC patients' survival. The differential ASEs related RNA-binding proteins (RBPs) were enriched in metabolic pathways. The altered immune cell distribution, particularly macrophages and neutrophils, were perturbated by differential ASEs. The cancer hallmarks were enriched in steatotic liver grafts and closely associated with differential ASEs. Our work identified the differential ASE network with metabolic RBPs, immune cell distribution, and cancer hallmarks in steatotic liver grafts. We verified the link between steatotic liver graft injury and tumor recurrence at post-transcriptional level, offered new evidence to explore metabolism and immune responses, and provided the potential prognostic and therapeutic markers for tumor recurrence.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Humans , Rats , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/metabolism , Transcriptome , Alternative Splicing , Neoplasm Recurrence, Local/pathology , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Liver Neoplasms/metabolism , Fatty Liver/metabolism , Liver/metabolism
9.
J Hepatol ; 77(2): 410-423, 2022 08.
Article in English | MEDLINE | ID: mdl-35351523

ABSTRACT

BACKGROUND & AIMS: The hepatic manifestation of the metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), can lead to the development of hepatocellular carcinoma (HCC). Despite a strong causative link, NAFLD-HCC is often underrepresented in systematic genome explorations. METHODS: Herein, tumor-normal pairs from 100 patients diagnosed with NAFLD-HCC were subject to next-generation sequencing. Bioinformatic analyses were performed to identify key genomic, epigenomic and transcriptomic events associated with the pathogenesis of NAFLD-HCC. Establishment of primary patient-derived NAFLD-HCC culture was used as a representative human model for downstream in vitro investigations of the underlying CTNNB1 S45P driver mutation. A syngeneic immunocompetent mouse model was used to further test the involvement of CTNNB1mutand TNFRSF19 in reshaping the tumor microenvironment. RESULTS: Mutational processes operative in the livers of patients with NAFLD inferred susceptibility to tumor formation through defective DNA repair pathways. Dense promoter mutations and dysregulated transcription factors accentuated activated transcriptional regulation in NAFLD-HCC, in particular the enrichment of MAZ-MYC activities. Somatic events common in HCCs arising from NAFLD and viral hepatitis B infection underscore similar driver pathways, although an incidence shift highlights CTNNB1mut dominance in NAFLD-HCC (33%). Immune exclusion correlated evidently with CTNNB1mut. Chromatin immunoprecipitation-sequencing integrated with transcriptome and immune profiling revealed a unique transcriptional axis, wherein CTNNB1mut leads to an upregulation of TNFRSF19 which subsequently represses senescence-associated secretory phenotype-like cytokines (including IL6 and CXCL8). This phenomenon could be reverted by the Wnt-modulator ICG001. CONCLUSIONS: The unique mutational processes in the livers of patients with NAFLD and NAFLD-HCC allude to a "field effect" involving a gain-of-function role of CTNNB1 mutations in immune exclusion. LAY SUMMARY: The increasing prevalence of metabolic syndrome in adult populations means that NAFLD is poised to be the major cause of liver cancer in the 21st century. We showed a strong "field effect" in the livers of patients with NAFLD, wherein activated ß-catenin was involved in reshaping the tumor-immune microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Receptors, Tumor Necrosis Factor , beta Catenin , Adult , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Hepatitis B , Humans , Immune Evasion , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mutation , Non-alcoholic Fatty Liver Disease/genetics , Receptors, Tumor Necrosis Factor/genetics , Tumor Microenvironment , beta Catenin/genetics , beta Catenin/metabolism
10.
Ann Surg ; 276(5): e483-e492, 2022 11 01.
Article in English | MEDLINE | ID: mdl-32889872

ABSTRACT

OBJECTIVE: To investigate the association of graft steatosis with long-term outcome, and to elucidate the mechanism of steatotic graft injury in adult living donor liver transplantation. SUMMARY OF BACKGROUND DATA: The utilization of steatotic graft expands the donor pool for living donor liver transplantation (LDLT). However, it remains controversial due to its high morbidity and mortality. Elucidating the mechanism of steatotic graft injury is crucial to develop therapeutic strategies targeting at graft injury and to further expand the donor pool. METHODS: Five hundred thirty patients receiving LDLT were prospectively included for risk factor analysis and outcome comparison. Rat orthotopic liver transplantation, in vitro functional experiments and mouse hepatic ischemia/ reperfusion models were established to explore the mechanisms of steatotic graft injury. RESULTS: We identified that graft with >10% steatosis was an independent risk factor for long-term graft loss after LDLT (hazard ratio 2.652, P = 0.001), and was associated with shorter cancer recurrence-free survival and acute phase liver injury. Steatotic graft displayed distinct mitochondrial dysfunction, including membrane, calcium, and energy homeostasis dysregulation. Specifically, the mitochondrial biogenesis was remarkably downregulated in steatotic graft. Inhibition of AMPK-PGC1α axis impaired mitochondrial biogenesis and was lethal to fatty hepatocyte in vitro , whereas reactivation of AMPK promoted PGC1α-mediated mitochondrial biogenesis and attenuated liver injury via restoring mitochondrial function in animal model. Conclusions: We provided a new mechanism that compromised AMPK-PGC1α axis exacerbated steatotic graft injury in LDLT by dysregulating mitochondrial homeostasis through impairment of biogenesis.


Subject(s)
Fatty Liver , Liver Transplantation , Reperfusion Injury , AMP-Activated Protein Kinases , Animals , Calcium , Disease Models, Animal , Homeostasis , Humans , Liver , Living Donors , Mice , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats
11.
Hepatology ; 74(1): 264-280, 2021 07.
Article in English | MEDLINE | ID: mdl-33462832

ABSTRACT

BACKGROUND AND AIMS: Mutational signature analyses are an effective tool in identifying cancer etiology. Humans are frequently exposed to pyrrolizidine alkaloids (PAs), the most common carcinogenic phytotoxins widely distributed in herbal remedies and foods. However, due to the lack of human epidemiological data, PAs are classified as group II hepatocarcinogens by the World Health Organization. This study identified a PA mutational signature as the biomarker to investigate the association of PA exposure with human liver cancer. APPROACH AND RESULTS: Pyrrole-protein adducts (PPAs), the PA exposure biomarker, were measured and found in 32% of surgically resected specimens from 34 patients with liver cancer in Hong Kong. Next, we delineated the mode of mutagenic and tumorigenic actions of retrorsine, a representative PA, in mice and human hepatocytes (HepaRG). Retrorsine induced DNA adduction, DNA damage, and activation of tumorigenic hepatic progenitor cells, which initiated hepatocarcinogenesis. PA mutational signature, as the unique molecular fingerprint of PA-induced mutation, was derived from exome mutations in retrorsine-exposed mice and HepaRG cells. Notably, PA mutational signature was validated in genomes of patients with PPA-positive liver cancer but not patients with PPA-negative liver cancer, confirming the specificity of this biomarker in revealing PA-associated liver cancers. Furthermore, we examined the established PA mutational signature in 1,513 liver cancer genomes and found that PA-associated liver cancers were potentially prevalent in Asia (Mainland China [48%], Hong Kong [44%], Japan [22%], South Korea [6%], Southeast Asia [25%]) but minor in Western countries (North America [3%] and Europe [5%]). CONCLUSIONS: This study provides a clinical indication of PA-associated liver cancer. We discovered an unexpectedly extensive implication of PA exposure in patients with liver cancer, laying the scientific basis for precautionary approaches and prevention of PA-associated human liver cancers.


Subject(s)
Carcinogenesis/chemically induced , DNA Damage/drug effects , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms/chemically induced , Pyrrolizidine Alkaloids/adverse effects , Animals , Carcinogenesis/genetics , Cell Line, Tumor , DNA Mutational Analysis , Female , Humans , Liver/drug effects , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Male , Mice , Exome Sequencing
12.
Clin Transplant ; 36(10): e14635, 2022 10.
Article in English | MEDLINE | ID: mdl-35291044

ABSTRACT

BACKGROUND: Prompt identification of early allograft dysfunction (EAD) is critical to reduce morbidity and mortality in liver transplant (LT) recipients. OBJECTIVES: Evaluate the evidence supporting biomarkers that can provide diagnostic and predictive value for EAD. DATA SOURCES: Ovid MEDLINE, Embase, Scopus, Google Scholar, and Cochrane Central. METHODS: Systematic review following PRISMA guidelines and recommendations using the GRADE approach was derived from an international expert panel. Studies that investigated biomarkers or models for predicting EAD in adult LT recipients were included for in-depth evaluation and meta-analysis. Olthoff's criteria were used as the standard reference for the diagnostic accuracy evaluation. PROSPERO ID: CRD42021293838 RESULTS: Ten studies were included for the systematic review. Lactate, lactate clearance, uric acid, Factor V, HMGB-1, CRP to ALB ratio, phosphocholine, total cholesterol, and metabolomic predictive model were identified as potential early EAD predictive biomarkers. The sensitivity ranged between .39 and .92, while the specificity ranged from .63 to .90. Elevated lactate level was most indicative of EAD after adult LT (pooled diagnostic odds ratio of 7.15 (95%CI: 2.38-21.46)). The quality of evidence (QOE) for lactate as indicator was moderate according to the GRADE approach, whereas the QOE for other biomarkers was very low to low likely as consequence of study design characteristics such as single study, small sample size, and large ranges of sensitivity or specificity. CONCLUSIONS: Lactate is an early indicator to predict EAD after LT (Quality of Evidence: Moderate | Grade of Recommendation: Strong). Further multicenter studies and the use of machine perfusion setting should be implemented for validation.


Subject(s)
Liver Transplantation , Adult , Humans , Liver Transplantation/adverse effects , Allografts , Risk Factors , Transplantation, Homologous , Biomarkers , Lactic Acid
13.
Ann Surg ; 273(3): 483-493, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33065633

ABSTRACT

Transplant oncology defines any application of transplant medicine and surgery aimed at improving cancer patients' survival and/or quality of life. In practice, liver transplantation for selected hepato-biliary cancers is the only solid organ transplant with demonstrated efficacy in curing cancer. Four are the proposed future contributions of transplant oncology in hepato-biliary cancer (4-e). (1) evolutionary approach to cancer care that includes liver transplantation; (2) elucidation of self and non-self recognition systems, by linking tumor and transplant immunology; (3) exploration of innovative endpoints both in clinical and experimental settings taking advantage from the access to the entire liver explant; (4) extension of surgical limitation in the multidisciplinary approach to hepato-biliary oncology. The aim of this review is to define the principles of transplant oncology that may be applied to hepato-biliary cancer treatment and research, attempting to balance current evidences with future opportunities.


Subject(s)
Liver Neoplasms/surgery , Liver Transplantation , Medical Oncology , Humans , Liver Neoplasms/pathology , Liver Neoplasms/secondary
14.
Gastroenterology ; 2020 May 16.
Article in English | MEDLINE | ID: mdl-32428506

ABSTRACT

BACKGROUND & AIMS: Intratumor heterogeneity and divergent clonal lineages within and among primary and recurrent hepatocellular carcinomas (HCCs) produce challenges to patient management. We investigated genetic and epigenetic variations within liver tumors, among hepatic lesions, and between primary and relapsing tumors. METHODS: Tumor and matched nontumor liver specimens were collected from 113 patients who underwent partial hepatectomy for primary or recurrent HCC at 2 hospitals in Hong Kong. We performed whole-genome, whole-exome, or targeted capture sequencing analyses of 356 HCC specimens collected from multiple tumor regions and matched initial and recurrent tumors. We performed parallel DNA methylation profiling analyses of 95 specimens. Genomes and epigenomes of nontumor tissues that contained areas of cirrhosis or fibrosis were analyzed. We developed liver cancer cell lines that endogenously expressed a mutant form of TP53 (R249S) or overexpressed mutant forms of STAT3 (D170Y, K348E, and Y640F) or JAK1 (S703I and L910P) and tested the abilities of pharmacologic agents to reduce activity. Cells were analyzed by immunoblotting and chromatin immunoprecipitation with quantitative polymerase chain reaction. RESULTS: We determined the monoclonal origins of individual tumors using a single-sample collection approach that captured more than 90% of mutations that are detected in all regions of tumors. Phylogenetic and phyloepigenetic analyses showed interactions and codependence between the genomic and epigenomic features of HCCs. Methylation analysis showed a field effect in cirrhotic liver tissues that predisposes them to tumor development. Comparisons of genetic features showed that 52% of recurrent HCCs derive from the clonal lineage of the initial tumor. The clonal origin of recurrent HCCs allowed construction of a temporal map of genetic alterations that were associated with tumor recurrence. Activation of JAK signaling to STAT was a characteristic of HCC progression via mutations that are associated with response to drug sensitivity. The combination of a mutation that increases the function of TP53 and the 17p chromosome deletion might provide liver cancer cells with a replicative advantage. Chromatin immunoprecipitation analysis of TP53 with the R249S substitution showed its interaction with genes that encode chromatin regulators (MLL1 and MLL2). We validated MLL1 and MLL2 as direct targets of TP53R249S and affirmed their association in the cancer genome atlas data set. The MLL-complex antagonists MI-2-2 (inhibitor of protein interaction) and OICR-9492 (inhibitor of activity) specifically inhibited proliferation of HCC cells that express TP53R249S at nanomolar concentrations. CONCLUSIONS: We performed a systematic evaluation of intra- and intertumor genetic heterogeneity in HCC samples and identified genetic and epigenetic changes that are associated with tumor progression and recurrence. We identified chromatin regulators that are up-regulated by mutant TP53 in HCC cells and inhibitors that reduce proliferation of these cells. DNA methylation patterns in cirrhotic or fibrotic liver tissues might be used to identify those at risk of HCC development.

15.
Small ; 17(38): e2103086, 2021 09.
Article in English | MEDLINE | ID: mdl-34411428

ABSTRACT

Mitochondrial dysfunction is considered to be an important factor that leads to aging and premature aging diseases. Transferring mitochondria to cells is an emerging and promising technique for the therapy of mitochondrial deoxyribonucleic acid (mtDNA)-related diseases. This paper presents a unique method of controlling the quality and quantity of mitochondria transferred to single cells using an automated optical tweezer-based micromanipulation system. The proposed method can automatically, accurately, and efficiently collect and transport healthy mitochondria to cells, and the recipient cells then take up the mitochondria through endocytosis. The results of the study reveal the possibility of using mitochondria from fetal mesenchymal stem cells (fMSCs) as a potential source to reverse the aging-related phenotype and improve metabolic activities in adult mesenchymal stem cells (aMSCs). The results of the quantitative polymerase chain reaction analysis show that the transfer of isolated mitochondria from fMSCs to a single aMSC can significantly increase the antiaging and metabolic gene expression in the aMSC. The proposed mitochondrial transfer method can greatly promote precision medicine for cell therapy of mtDNA-related diseases.


Subject(s)
Mesenchymal Stem Cells , Optical Tweezers , Gene Expression , Mesenchymal Stem Cells/metabolism , Mitochondria
16.
Hepatology ; 72(1): 183-197, 2020 07.
Article in English | MEDLINE | ID: mdl-31680287

ABSTRACT

BACKGROUND AND AIMS: Embryonic stem-cell-related transcription factors are central to the establishment and maintenance of stemness and pluripotency, and their altered expression plays key roles in tumors, including hepatocellular carcinoma (HCC), a malignancy with no effective treatment. Here, we report on the embryonic stem cell marker, reduced expression 1 (REX1; also known as zinc finger protein 42), to be selectively down-regulated in HCC tumors. APPROACH AND RESULTS: Deficiency of REX1 in HCC was attributed to a combination of hypermethylation at its promoter as well as histone modification by methylation and acetylation. Clinically, hypermethylation of REX1 was closely associated with neoplastic transition and advanced tumor stage in humans. Functionally, silencing of REX1 potentiated the tumor-initiating and metastasis potential of HCC cell lines and xenografted tumors. Lentivirus-mediated Rex1 ablation in liver of male immunocompetent mice with HCC, induced by hydrodynamic tail vein injection of proto-oncogenes, enhanced HCC development. Transcriptome profiling studies revealed REX1 deficiency in HCC cells to be enriched with genes implicated in focal adhesion and mitogen-activated protein kinase (MAPK) signaling. From this lead, we subsequently found REX1 to bind to the promoter region of mitogen-activated protein kinase kinase 6 (MKK6), thereby obstructing its transcription, resulting in altered p38 MAPK signaling. CONCLUSIONS: Our work describes a critical repressive function of REX1 in maintenance of HCC cells by regulating MKK6 binding and p38 MAPK signaling. REX1 deficiency induced enhancement of p38 MAPK signaling, leading to F-actin reorganization and activation of nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, which collectively contributed to enhanced stemness and metastatic capabilities of HCC cells.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular/etiology , Embryonic Stem Cells/physiology , Kruppel-Like Transcription Factors/deficiency , Liver Neoplasms/etiology , MAP Kinase Kinase 6/physiology , Signal Transduction , p38 Mitogen-Activated Protein Kinases/physiology , Cell Line, Tumor , Humans
17.
Hepatology ; 71(4): 1279-1296, 2020 04.
Article in English | MEDLINE | ID: mdl-31469916

ABSTRACT

BACKGROUND AND AIMS: Most tumor cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and promote tumorigenicity and drug resistance. Intriguingly, the molecular mechanisms underlying this phenomenon are not well understood. In this work, using gain-of-function and loss-of-function in vitro studies in patient-derived organoid and cell cultures as well as in vivo positron emission tomography-magnetic resonance imaging animal models, we showed that protein arginine N-methyltransferase 6 (PRMT6) regulates aerobic glycolysis in human hepatocellular carcinoma (HCC) through nuclear relocalization of pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. APPROACH AND RESULTS: We found PRMT6 to methylate CRAF at arginine 100, interfering with its RAS/RAF binding potential, and therefore altering extracellular signal-regulated kinase (ERK)-mediated PKM2 translocation into the nucleus. This altered PRMT6-ERK-PKM2 signaling axis was further confirmed in both a HCC mouse model with endogenous knockout of PRMT6 as well as in HCC clinical samples. We also identified PRMT6 as a target of hypoxia through the transcriptional repressor element 1-silencing transcription factor, linking PRMT6 with hypoxia in driving glycolytic events. Finally, we showed as a proof of concept the therapeutic potential of using 2-deoxyglucose, a glycolysis inhibitor, to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC. CONCLUSIONS: Our findings indicate that the PRMT6-ERK-PKM2 regulatory axis is an important determinant of the Warburg effect in tumor cells, and provide a mechanistic link among tumorigenicity, sorafenib resistance, and glucose metabolism.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-raf/metabolism , Warburg Effect, Oncologic , Active Transport, Cell Nucleus , Cell Nucleus/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , Hep G2 Cells , Humans , Methylation , Pyruvate Kinase/metabolism
18.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360975

ABSTRACT

Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.


Subject(s)
Liver Transplantation/adverse effects , Postoperative Complications/metabolism , Primary Graft Dysfunction/metabolism , Animals , Humans , Ischemic Preconditioning/methods , Liver/blood supply , Liver/metabolism , Postoperative Complications/drug therapy , Postoperative Complications/therapy , Primary Graft Dysfunction/drug therapy , Primary Graft Dysfunction/therapy , Prostaglandins/therapeutic use
19.
Clin Gastroenterol Hepatol ; 18(2): 449-456, 2020 02.
Article in English | MEDLINE | ID: mdl-31252193

ABSTRACT

BACKGROUND & AIMS: In some individuals with undetectable serum levels of hepatitis B surface antigen (HBsAg), hepatitis B virus (HBV) DNA can still be detected in serum or hepatocytes and HBV replicates at low levels-this is called occult HBV infection (OBI). OBI has been associated with increased risk of hepatocellular carcinoma (HCC). We investigated the incidence of OBI in patients with HCC and other liver diseases. We also investigated whether, in patients with OBI and HCC, HBV DNA has integrated into the DNA of hepatocytes. METHODS: We collected clinical information and liver tissues from 110 HBsAg-negative patients (90 with HCC and 20 without HCC; median ages at surgical resection and biopsy collection, 64.1 and 48.6 years, respectively) who underwent liver resection or liver biopsy from November 2002 through July 2017 in Hong Kong. HBV DNA and covalently closed circular DNA (cccDNA) were analyzed and quantified by PCR in liver tissues. Integration of HBV DNA into the DNA of liver cells was detected by Alu-PCR. RESULTS: Of the 90 HBsAg-negative patients with HCC, 18 had alcoholic liver disease (20%), 14 had non-alcoholic fatty liver disease or steatohepatitis (16%), 2 had primary biliary cholangitis, 2 had recurrent pyogenic cholangitis, 1 had autoimmune hepatitis, and 53 had none of these (59%). Among the 20 patients without HCC, 7 had non-alcoholic fatty liver disease or steatohepatitis, 7 had primary biliary cholangitis, and 6 had autoimmune hepatitis. OBI was detected in 62/90 patients with HCC (69%) and 3/20 patients without HCC (15%) (P < .0001). cccDNA was detectable in liver cells of 29 patients with HCC and OBI (47%) and HBV DNA had integrated into DNA of liver cells of 43 patients with HCC and OBI (69%); cccDNA and integrated HBV DNA were not detected in the 3 patients who had OBI without HCC. There were 29 patients with integration of HBV DNA among 33 patients with undetectable cccDNA in liver tissues (88%) and 14 patients with integration of HBV DNA among the 29 patients with cccDNA in liver tissues (48%) (P = .001). HBV DNA was found to integrate near genes associated with hepatocarcinogenesis, such as those encoding telomerase reverse transcriptase, lysine methyltransferase 2B, and cyclin A2. Among the 43 patients with integration of HBV DNA, 39 (91%) did not have cirrhosis. CONCLUSIONS: In an analysis of clinical data and liver tissues from 90 HBsAg-negative patients with HCC, we found that almost 70% had OBI, of whom 70% had integration of HBV DNA into liver cell DNA; 90% of these patients did not have cirrhosis. HBV DNA integrated near hepatic oncogenes; these integrations might promote development of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Carcinoma, Hepatocellular/epidemiology , DNA, Circular , DNA, Viral , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Hepatitis B, Chronic/complications , Hepatocytes , Humans , Liver Cirrhosis , Liver Neoplasms/epidemiology
20.
Gastroenterology ; 157(6): 1630-1645.e6, 2019 12.
Article in English | MEDLINE | ID: mdl-31560893

ABSTRACT

BACKGROUND & AIMS: Intratumor heterogeneity and divergent clonal lineages within and among primary and recurrent hepatocellular carcinomas (HCCs) produce challenges to patient management. We investigated genetic and epigenetic variations within liver tumors, among hepatic lesions, and between primary and relapsing tumors. METHODS: Tumor and matched nontumor liver specimens were collected from 113 patients who underwent partial hepatectomy for primary or recurrent HCC at 2 hospitals in Hong Kong. We performed whole-genome, whole-exome, or targeted capture sequencing analyses of 356 HCC specimens collected from multiple tumor regions and matched initial and recurrent tumors. We performed parallel DNA methylation profiling analyses of 95 specimens. Genomes and epigenomes of nontumor tissues that contained areas of cirrhosis or fibrosis were analyzed. We developed liver cancer cell lines that endogenously expressed a mutant form of TP53 (R249S) or overexpressed mutant forms of STAT3 (D170Y, K348E, and Y640F) or JAK1 (S703I and L910P) and tested the abilities of pharmacologic agents to reduce activity. Cells were analyzed by immunoblotting and chromatin immunoprecipitation with quantitative polymerase chain reaction. RESULTS: We determined the monoclonal origins of individual tumors using a single sample collection approach that captured more than 90% of mutations that are detected in all regions of tumors. Phylogenetic and phylo-epigenetic analyses revealed interactions and codependence between the genomic and epigenomic features of HCCs. Methylation analysis revealed a field effect in cirrhotic liver tissues that predisposes them to tumor development. Comparisons of genetic features revealed that 52% of recurrent HCCs derive from the clonal lineage of the initial tumor. The clonal origin if recurrent HCCs allowed construction of a temporal map of genetic alterations that associated with tumor recurrence. Activation of JAK signaling to STAT was a characteristic of HCC progression via mutations that associate with response to drug sensitivity. The combination of a mutation that increases the function of TP53 and the 17p chromosome deletion might provide liver cancer cells with a replicative advantage. Chromatin immunoprecipitation analysis of TP53 with the R249S substitution revealed its interaction with genes that encode chromatin regulators (MLL1 and MLL2). We validated MLL1 and MLL2 as direct targets of TP53R249S and affirmed their association in the Cancer Genome Atlas dataset. The MLL-complex antagonists MI-2-2 (inhibitor of protein interaction) and OICR-9492 (inhibitor of activity) specifically inhibited proliferation of HCC cells that express TP53R249S at nanomolar concentrations. CONCLUSIONS: We performed a systematic evaluation of intra- and intertumor genetic heterogeneity in HCC samples and identified genetic and epigenetic changes that associate with tumor progression and recurrence. We identified chromatin regulators that are upregulated by mutant TP53 in HCC cells and inhibitors that reduce proliferation of these cells. DNA methylation patterns in cirrhotic or fibrotic liver tissues might be used to identify those at risk of HCC development.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Adult , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , DNA Methylation , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Female , Follow-Up Studies , Gain of Function Mutation , Genetic Heterogeneity , Hepatectomy , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Hong Kong , Humans , Liver/pathology , Liver/surgery , Liver Cirrhosis/pathology , Liver Cirrhosis/surgery , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Male , Middle Aged , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL