Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Publication year range
1.
Respir Res ; 24(1): 124, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143066

ABSTRACT

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Subject(s)
HIV Infections , Pulmonary Disease, Chronic Obstructive , Humans , Dysbiosis/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Gene Expression Profiling , Epithelium , HIV Infections/epidemiology , HIV Infections/genetics
2.
Am J Respir Crit Care Med ; 206(2): 150-160, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35426765

ABSTRACT

Rationale: Age-related diseases like chronic obstructive pulmonary disease (COPD) occur at higher rates in people living with human immunodeficiency virus (PLWH) than in uninfected populations. Objectives: To identify whether accelerated aging can be observed in the airways of PLWH with COPD, manifest by a unique DNA methylation signature. Methods: Bronchial epithelial brushings from PLWH with and without COPD and HIV-uninfected adults with and without COPD (N = 76) were profiled for DNA methylation and gene expression. We evaluated global Alu and LINE-1 methylation and calculated the epigenetic age using the Horvath clock and the methylation telomere length estimator. To identify genome-wide differential DNA methylation and gene expression associated with HIV and COPD, robust linear models were used followed by an expression quantitative trait methylation (eQTM) analysis. Measurements and Main Results: Epigenetic age acceleration and shorter methylation estimates of telomere length were found in PLWH with COPD compared with PLWH without COPD and uninfected patients with and without COPD. Global hypomethylation was identified in PLWH. We identified 7,970 cytosine bases located next to a guanine base (CpG sites), 293 genes, and 9 expression quantitative trait methylation-gene pairs associated with the interaction between HIV and COPD. Actin binding LIM protein family member 3 (ABLIM3) was one of the novel candidate genes for HIV-associated COPD highlighted by our analysis. Conclusions: Methylation age acceleration is observed in the airway epithelium of PLWH with COPD, a process that may be responsible for the heightened risk of COPD in this population. Their distinct methylation profile, differing from that observed in patients with COPD alone, suggests a unique pathogenesis to HIV-associated COPD. The associations warrant further investigation to establish causality.


Subject(s)
HIV Infections , Pulmonary Disease, Chronic Obstructive , Adult , Aging/genetics , DNA Methylation/genetics , Epigenomics , HIV Infections/complications , HIV Infections/genetics , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics
3.
J Infect Dis ; 223(10): 1681-1689, 2021 05 28.
Article in English | MEDLINE | ID: mdl-32959881

ABSTRACT

BACKGROUND: Whether accelerated aging develops over the course of chronic human immunodeficiency virus (HIV) infection or can be observed before significant immunosuppression on is unknown. We studied DNA methylation in blood to estimate cellular aging in persons living with HIV (PLWH) before the initiation of antiretroviral therapy (ART). METHODS: A total of 378 ART-naive PLWH who had CD4 T-cell counts >500/µL and were enrolled in the Strategic Timing of Antiretroviral Therapy trial (Pulmonary Substudy) were compared with 34 HIV-negative controls. DNA methylation was performed using the Illumina MethylationEPIC BeadChip. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in PLWH compared with controls were identified using a robust linear model. Methylation age was calculated using a previously described epigenetic clock. RESULTS: There were a total of 56 639 DMPs and 6103 DMRs at a false discovery rate of <0.1. The top 5 DMPs corresponded to genes NLRC5, VRK2, B2M, and GPR6 and were highly enriched for cancer-related pathways. PLWH had significantly higher methylation age than HIV-negative controls (P = .001), with black race, low CD4 and high CD8 T-cell counts, and duration of HIV being risk factors for age acceleration. CONCLUSIONS: PLWH before the initiation of ART and with preserved immune status show evidence of advanced methylation aging.


Subject(s)
Aging/genetics , DNA Methylation , Epigenesis, Genetic , HIV Infections , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/genetics , Humans
4.
Respir Res ; 22(1): 75, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33653328

ABSTRACT

BACKGROUND: Asthma was identified as the most common comorbidity in hospitalized patients during the 2009 H1N1 influenza pandemic. We determined using a murine model of allergic asthma whether these mice experienced increased morbidity from pandemic H1N1 (pH1N1) viral infection and whether blockade of interleukin-4 receptor α (IL-4Rα), a critical mediator of Th2 signalling, improved their outcomes. METHODS: Male BALB/c mice were intranasally sensitized with house dust mite antigen (Der p 1) for 2 weeks; the mice were then inoculated intranasally with a single dose of pandemic H1N1 (pH1N1). The mice were administered intraperitoneally anti-IL-4Rα through either a prophylactic or a therapeutic treatment strategy. RESULTS: Infection with pH1N1 of mice sensitized to house dust mite (HDM) led to a 24% loss in weight by day 7 of infection (versus 14% in non-sensitized mice; p < .05). This was accompanied by increased viral load in the airways and a dampened anti-viral host responses to the infection. Treatment of HDM sensitized mice with a monoclonal antibody against IL-4Rα prior to or following pH1N1 infection prevented the excess weight loss, reduced the viral load in the lungs and ameliorated airway eosinophilia and systemic inflammation related to the pH1N1 infection. CONCLUSION: Together, these data implicate allergic asthma as a significant risk factor for H1N1-related morbidity and reveal a potential therapeutic role for IL-4Rα signalling blockade in reducing the severity of influenza infection in those with allergic airway disease.


Subject(s)
Asthma/metabolism , Hypersensitivity/metabolism , Influenza, Human/metabolism , Pyroglyphidae/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Asthma/chemically induced , Asthma/drug therapy , Disease Models, Animal , Humans , Hypersensitivity/drug therapy , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/drug therapy , Male , Mice , Mice, Inbred BALB C
5.
Respir Res ; 22(1): 316, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34937547

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an age-related condition that has been associated with early telomere attrition; the clinical implications of telomere shortening in COPD are not well known. In this study we aimed to determine the relationship of the epigenetic regulation of telomeric length in peripheral blood with the risk of exacerbations and hospitalization in patients with COPD. METHODS: Blood DNA methylation profiles were obtained from 292 patients with COPD enrolled in the placebo arm of the Macrolide Azithromycin to Prevent Rapid Worsening of Symptoms Associated with Chronic Obstructive Pulmonary Disease (MACRO) Study and who were followed for 1-year. We calculated telomere length based on DNA methylation markers (DNAmTL) and related this biomarker to the risk of exacerbation and hospitalization and health status (St. George Respiratory Questionnaire [SGRQ]) score over time using a Cox proportional hazards model. We also used linear models to investigate the associations of DNAmTL with the rates of exacerbation and hospitalization (adjusted for chronological age, lung function, race, sex, smoking, body mass index and cell composition). RESULTS: Participants with short DNAmTL demonstrated increased risk of exacerbation (P = 0.02) and hospitalization (P = 0.03) compared to those with longer DNAmTL. DNAmTL age acceleration was associated with higher rates of exacerbation (P = 1.35 × 10-04) and hospitalization (P = 5.21 × 10-03) and poor health status (lower SGRQ scores) independent of chronological age (P = 0.03). CONCLUSION: Telomeric age based on blood DNA methylation is associated with COPD exacerbation and hospitalization and thus a promising biomarker for poor outcomes in COPD.


Subject(s)
Azithromycin/therapeutic use , Hospitalization/trends , Pulmonary Disease, Chronic Obstructive/drug therapy , Telomere/physiology , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Biomarkers/metabolism , DNA Methylation , Disease Progression , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Quality of Life , Retrospective Studies , Surveys and Questionnaires , Time Factors , United States/epidemiology
6.
Am J Respir Crit Care Med ; 199(10): 1205-1213, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30376356

ABSTRACT

Rationale: Lung dysbiosis promotes airway inflammation and decreased local immunity, potentially playing a role in the pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Objectives: We sought to determine the relationship between sputum microbiome at the time of AECOPD hospitalization and 1-year mortality in a COPD cohort. Methods: We used sputum samples from 102 patients hospitalized because of AECOPD. All subjects were followed for 1 year after discharge. The microbiome profile was assessed through sequencing of 16S rRNA gene. Microbiome analyses were performed according to 1-year mortality status. To investigate the effect of α-diversity measures and taxon features on time to death, we applied Cox proportional hazards regression models and obtained hazard ratios (HRs) associated with these variables. Measurements and Main Results: We observed significantly lower values of α-diversity (richness, Shannon index, evenness, and Faith's Phylogenetic Diversity) among nonsurvivors (n = 19, 18.6%) than survivors (n = 83, 81.4%). ß-Diversity analysis also demonstrated significant differences between both groups (adjusted permutational multivariate ANOVA, P = 0.010). The survivors had a higher relative abundance of Veillonella; in contrast, nonsurvivors had a higher abundance of Staphylococcus. The adjusted HRs for 1-year mortality increased significantly with decreasing α-diversity. We also observed lower survival among patients in whom sputum samples were negative for Veillonella (HR, 13.5; 95% confidence interval, 4.2-43.9; P < 0.001) or positive for Staphylococcus (HR, 7.3; 95% confidence interval, 1.6-33.2; P = 0.01). Conclusions: The microbiome profile of sputum in AECOPD is associated with 1-year mortality and may be used to identify subjects with a poor prognosis at the time of hospitalization.


Subject(s)
Dysbiosis/mortality , Microbiota , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/mortality , Sputum/microbiology , Aged , British Columbia , Cohort Studies , Female , Hospitalization , Humans , Male , Middle Aged , Proportional Hazards Models
7.
Eur Respir J ; 54(6)2019 12.
Article in English | MEDLINE | ID: mdl-31537701

ABSTRACT

Inhaled corticosteroids (ICS) are widely prescribed for patients with chronic obstructive pulmonary disease (COPD), yet have variable outcomes and adverse reactions, which may be genetically determined. The primary aim of the study was to identify the genetic determinants for forced expiratory volume in 1 s (FEV1) changes related to ICS therapy.In the Lung Health Study (LHS)-2, 1116 COPD patients were randomised to the ICS triamcinolone acetonide (n=559) or placebo (n=557) with spirometry performed every 6 months for 3 years. We performed a pharmacogenomic genome-wide association study for the genotype-by-ICS treatment effect on 3 years of FEV1 changes (estimated as slope) in 802 genotyped LHS-2 participants. Replication was performed in 199 COPD patients randomised to the ICS, fluticasone or placebo.A total of five loci showed genotype-by-ICS interaction at p<5×10-6; of these, single nucleotide polymorphism (SNP) rs111720447 on chromosome 7 was replicated (discovery p=4.8×10-6, replication p=5.9×10-5) with the same direction of interaction effect. ENCODE (Encyclopedia of DNA Elements) data revealed that in glucocorticoid-treated (dexamethasone) A549 alveolar cell line, glucocorticoid receptor binding sites were located near SNP rs111720447. In stratified analyses of LHS-2, genotype at SNP rs111720447 was significantly associated with rate of FEV1 decline in patients taking ICS (C allele ß 56.36 mL·year-1, 95% CI 29.96-82.76 mL·year-1) and in patients who were assigned to placebo, although the relationship was weaker and in the opposite direction to that in the ICS group (C allele ß -27.57 mL·year-1, 95% CI -53.27- -1.87 mL·year-1).The study uncovered genetic factors associated with FEV1 changes related to ICS in COPD patients, which may provide new insight on the potential biology of steroid responsiveness in COPD.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Forced Expiratory Volume/drug effects , Pharmacogenetics , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , A549 Cells , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Aged , Disease Progression , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quality of Life
8.
Respir Res ; 19(1): 117, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29895291

ABSTRACT

Human immunodeficiency virus (HIV) infection is associated with an increased risk of chronic obstructive pulmonary disease (COPD) independent of cigarette smoke exposure. Previous studies have demonstrated that decreased peripheral leukocyte telomere length is associated with HIV, suggesting an accelerated aging phenomenon. We demonstrate that this process of telomere shortening also occurs in the lungs, with significant decreases in telomere length observed in small airway epithelial cells collected during bronchoscopy. Molecular evidence of accelerated aging in the small airway epithelium of persons living with HIV may be one clue into the predisposition for chronic lung disease observed in this population.


Subject(s)
Aging/genetics , HIV Infections/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Respiratory Mucosa/physiology , Telomere Homeostasis/physiology , Telomere/genetics , Aged , Aging/metabolism , Cohort Studies , Female , HIV Infections/metabolism , HIV Infections/pathology , Humans , Lung/pathology , Lung/physiology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/pathology , Smoking/genetics , Smoking/metabolism , Smoking/pathology , Telomere/metabolism , Telomere/pathology , Viral Load/trends
9.
Respir Res ; 19(1): 140, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30053882

ABSTRACT

BACKGROUND: Persons living with human immunodeficiency virus (PLWH) face an increased burden of chronic obstructive pulmonary disease (COPD). Repeated pulmonary infections, antibiotic exposures, and immunosuppression may contribute to an altered small airway epithelium (SAE) microbiome. METHODS: SAE cells were collected from 28 PLWH and 48 HIV- controls through bronchoscopic cytologic brushings. DNA extracted from SAE cells was subjected to 16S rRNA amplification and sequencing. Comparisons of alpha and beta diversity between HIV+ and HIV- groups were performed and key operational taxonomic units (OTUs) distinguishing the two groups were identified using the Boruta feature selection after Random Forest Analysis. RESULTS: PLWH demonstrated significantly reduced Shannon diversity compared with HIV- volunteers (1.82 ± 0.10 vs. 2.20 ± 0.073, p = 0.0024). This was primarily driven by a reduction in bacterial richness (23.29 ± 2.75 for PLWH and 46.04 ± 3.716 for HIV-, p < 0.0001). Phyla distribution was significantly altered among PLWH, with an increase in relative abundance of Proteobacteria (p = 0.0003) and a decrease in Bacteroidetes (p = 0.0068) and Firmicutes (p = 0.0002). Six discriminative OTUs were found to distinguish PLWH from HIV- volunteers, aligning to Veillonellaceae, Fusobacterium, Verrucomicrobiaceae, Prevotella, Veillonella, and Campylobacter. CONCLUSIONS: Compared to HIV- controls, PLWH's SAE microbiome is marked by reduced bacterial diversity and richness with significant differences in community composition.


Subject(s)
HIV Infections/microbiology , Microbiota/physiology , Pulmonary Disease, Chronic Obstructive/microbiology , Respiratory Mucosa/microbiology , Respiratory Mucosa/physiology , Aged , Bronchoscopy/methods , Cohort Studies , Female , HIV Infections/physiopathology , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology
10.
Respir Res ; 19(1): 30, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29444682

ABSTRACT

BACKGROUND: The literature is scarce regarding the prevalence and clinical impact of IgG subclass deficiency in COPD. We investigated the prevalence of IgG subclass deficiencies and their association with exacerbations and hospitalizations using subjects from two COPD cohorts. METHODS: We measured IgG subclass levels using immunonephelometry in serum samples from participants enrolled in two previous COPD trials: Macrolide Azithromycin for Prevention of Exacerbations of COPD (MACRO; n = 976) and Simvastatin for the Prevention of Exacerbations in Moderate-to-Severe COPD (STATCOPE; n = 653). All samples were collected from clinically stable participants upon entry into both studies. IgG subclass deficiency was diagnosed when IgG subclass levels were below their respective lower limit of normal: IgG1 < 2.8 g/L; IgG2 < 1.15 g/L; IgG3 < 0.24 g/L; and IgG4 < 0.052 g/L. To investigate the impact of IgG subclass levels on time to first exacerbation or hospitalization, we log-transformed IgG levels and performed Cox regression models, with adjustments for confounders. RESULTS: One or more IgG subclass deficiencies were found in 173 (17.7%) and 133 (20.4%) participants in MACRO and STATCOPE, respectively. Lower IgG1 or IgG2 levels resulted in increased risk of exacerbations with adjusted hazard ratios (HR) of 1.30 (95% CI, 1.10-1.54, p < 0.01) and 1.19 (95% CI, 1.05-1.35, p < 0.01), respectively in the MACRO study, with STATCOPE yielding similar results. Reduced IgG1 or IgG2 levels were also associated with increased risk of hospitalizations: the adjusted HR for IgG1 and IgG2 was 1.52 (95% CI: 1.15-2.02, p < 0.01) and 1.33 (95% CI, 1.08-1.64, p < 0.01), respectively for the MACRO study; in STATCOPE, only IgG2 was an independent predictor of hospitalization. In our multivariate Cox models, IgG3 and IgG4 levels did not result in significant associations for both outcomes in either MACRO or STATCOPE cohorts. CONCLUSIONS: Approximately 1 in 5 COPD patients had one or more IgG subclass deficiencies. Reduced IgG subclass levels were independent risk factors for both COPD exacerbations (IgG1 and IgG2) and hospitalizations (IgG2) in two COPD cohorts. TRIAL REGISTRATION: This study used serum samples from participants of the MACRO ( NCT00325897 ) and STATCOPE ( NCT01061671 ) trials.


Subject(s)
Hospitalization/trends , IgG Deficiency/blood , IgG Deficiency/diagnosis , Immunoglobulin G/blood , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Aged , Biomarkers/blood , Double-Blind Method , Female , Humans , IgG Deficiency/epidemiology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/epidemiology , Retrospective Studies , Risk Factors
11.
AIDS Care ; 30(7): 936-942, 2018 07.
Article in English | MEDLINE | ID: mdl-29411625

ABSTRACT

People living with HIV (PLWHA) with adequate access to modern combination antiretroviral therapy (cART) are living longer and experiencing reduced AIDS-related morbidity and mortality. However, increases in non-AIDS related conditions, such as certain cancers, have accompanied these therapeutic advances over time. As such, our study objective was to determine the impact of HIV on all-cause and lung cancer-specific mortality amongst PLWHA with diagnoses of non-small-cell lung cancer (NSCLC) and HIV-negative individuals with NSCLC. This analysis was inclusive of PLWHA on and off cART over the age of 19 years and a 10% comparison sample from the BC population ≥19 years, over a 13-year period (2000-2013). Kaplan-Meier estimates, Cox PH models, and competing risk analysis for all-cause and cause-specific mortality (respectively) compared PLWHA to HIV-negative individuals, controlling for age, gender, cancer stage, co-morbidities; and nadir CD4 count, viral load, and injection drug use for a HIV-positive specific analysis. We identified 71 PLWHA and 2463 HIV-negative individuals diagnosed with NSCLC between 2000 and 2013. PLWHA with NSCLC were diagnosed at a significantly younger age than HIV-negative individuals (median age 57 vs 71 years, p < 0.01). We found no significant difference in lung cancer-specific mortality. However, in multivariate analysis, HIV was associated with greater all-cause mortality (adjusted hazard ratio [aHR]:1.44; 95% confidence interval [CI]: 1.08-1.90), with median survival of 4 months for PLWHA, and 10 months for HIV-negative. Higher nadir CD4 count was protective against mortality (aHR: 0.33, 95% CI: 0.17-0.64) amongst PLWHA in multivariate analysis. Our analysis suggests that PLWHA in the modern cART era experience similar lung cancer survival outcomes compared to the general BC population with NSCLC. However, we also observed significantly higher all-cause mortality among PLWHA with NSCLC, which may warrant further inquiry into the role of HIV in exacerbating mortality among PLWHA with comorbidities and cancer.


Subject(s)
Antiretroviral Therapy, Highly Active , Carcinoma, Non-Small-Cell Lung/complications , HIV Infections/drug therapy , HIV Infections/mortality , Lung Neoplasms/complications , Acquired Immunodeficiency Syndrome/drug therapy , Adult , Aged , Female , HIV Infections/complications , Humans , Male , Middle Aged
12.
Respir Res ; 18(1): 109, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28558695

ABSTRACT

BACKGROUND: Helicobacter pylori (HP) infection is associated with reduced lung function and systemic inflammation in chronic obstructive pulmonary disease (COPD) patients. Azithromycin (AZ) is active against HP and reduces the risk of COPD exacerbation. We determined whether HP infection status modifies the effects of AZ in COPD patients. METHODS: Plasma samples from 1018 subjects with COPD who participated in the Macrolide Azithromycin (MACRO) in COPD Study were used to determine the HP infection status at baseline and 12 months of follow-up using a serologic assay. Based on HP infection status and randomization to either AZ or placebo (PL), the subjects were divided into 4 groups: HP+/AZ, HP-/AZ, HP+/PL, and HP-/PL. Time to first exacerbation was compared across the 4 groups using Kaplan-Meier survival analysis and a Cox proportional hazards model. The rates of exacerbation were compared using both the Kruskal-Wallis test and negative binomial analysis. Blood biomarkers at enrolment and at follow-up visits 3, 12, and 13 (1 month after treatment was stopped) months were measured. RESULTS: One hundred eighty one (17.8%) patients were seropositive to HP. Non-Caucasian participants were nearly three times more likely to be HP seropositive than Caucasian participants (37.4% vs 13.6%; p < 0.001). The median time to first exacerbation was significantly different across the four groups (p = 0.001) with the longest time in the HP+/AZ group (11.2 months, 95% CI; 8.4-12.5+) followed by the HP-/AZ group (8.0 months, 95% CI; 6.7-9.7). Hazard ratio (HR) for exacerbations was lowest in the HP+/AZ group after adjustment for age, sex, smoking status, ethnicity, history of peptic ulcer, dyspnea, previous hospital admission, GOLD grade of severity, and forced vital capacity (HR, 0.612; 95% CI, 0.442-0.846 vs HR, 0.789; 95% CI, 0.663-0.938 in the HP-/AZ group). Circulating levels of soluble tumor necrosis factor receptor-75 were reduced only in the HP+/AZ group after 3 months of AZ treatment (-0.87 ± 0.31 µg/L; p = 0.002); levels returned to baseline after discontinuing AZ. CONCLUSIONS: AZ is effective in preventing COPD exacerbations in patients with HP seropositivity, possibly by modulating TNF pathways related to HP infection.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Lung/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Aged , Anti-Bacterial Agents/adverse effects , Antibodies, Bacterial/blood , Azithromycin/adverse effects , Biomarkers/blood , C-Reactive Protein/metabolism , Disease Progression , Disease-Free Survival , Female , Helicobacter Infections/blood , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Helicobacter pylori/immunology , Humans , Kaplan-Meier Estimate , Lung/microbiology , Lung/physiopathology , Male , Middle Aged , Proportional Hazards Models , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Receptors, Tumor Necrosis Factor, Type II/blood , Risk Factors , Serologic Tests , Time Factors , Treatment Outcome
13.
Am J Respir Crit Care Med ; 193(8): 825-34, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26599602

ABSTRACT

RATIONALE: After adjustment for the amount of smoking, women have a 50% increased risk of chronic obstructive pulmonary disease (COPD) compared with men. The anatomic basis and/or mechanism(s) of these sex-related differences in COPD are unknown. OBJECTIVES: To characterize the impact of female sex hormones on chronic cigarette smoke-induced airway remodeling and emphysema in a mouse model of COPD. METHODS: Airway remodeling and emphysema were determined morphometrically in male, female, and ovariectomized mice exposed to 6 months of cigarette smoke. Antioxidant- and transforming growth factor (TGF)-ß-related genes were profiled in airway tissues. The selective estrogen receptor modulator tamoxifen was also administered during smoke exposure in a short-term model. Airway wall thickness of male and female human smokers at risk of or with mild COPD was measured using optical coherence tomography. MEASUREMENTS AND MAIN RESULTS: Small airway wall remodeling was increased in female but not male or ovariectomized mice and was associated with increased distal airway resistance, down-regulation of antioxidant genes, increased oxidative stress, and activation of TGF-ß1. These effects were prevented by ovariectomy. Use of tamoxifen as a therapeutic intervention mitigated smoke-induced increase in oxidative stress in female mice. Compared with male human smokers, female human smokers had significantly thicker airway walls. CONCLUSIONS: The excess risk of small airway disease in female mice after chronic smoke exposure was associated with increased oxidative stress and TGF-ß1 signaling and also was related to the effects of female sex hormones. Estrogen receptor antagonism might be of value in reducing oxidative stress in female smokers.


Subject(s)
Airway Remodeling/physiology , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Sex Factors
14.
J Allergy Clin Immunol ; 138(6): 1571-1579.e10, 2016 12.
Article in English | MEDLINE | ID: mdl-27345171

ABSTRACT

BACKGROUND: The impact of airway hyperreactivity (AHR) on respiratory mortality and systemic inflammation among patients with chronic obstructive pulmonary disease (COPD) is largely unknown. We used data from 2 large studies to determine the relationship between AHR and FEV1 decline, respiratory mortality, and systemic inflammation. OBJECTIVES: We sought to determine the relationship of AHR with FEV1 decline, respiratory mortality, and systemic inflammatory burden in patients with COPD in the Lung Health Study (LHS) and the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease (GLUCOLD) study. METHODS: The LHS enrolled current smokers with mild-to-moderate COPD (n = 5887), and the GLUCOLD study enrolled former and current smokers with moderate-to-severe COPD (n = 51). For the primary analysis, we defined AHR by a methacholine provocation concentration of 4 mg/mL or less, which led to a 20% reduction in FEV1 (PC20). RESULTS: The primary outcomes were FEV1 decline, respiratory mortality, and biomarkers of systemic inflammation. Approximately 24% of LHS participants had AHR. Compared with patients without AHR, patients with AHR had a 2-fold increased risk of respiratory mortality (hazard ratio, 2.38; 95% CI, 1.38-4.11; P = .002) and experienced an accelerated FEV1 decline by 13.2 mL/y in the LHS (P = .007) and by 12.4 mL/y in the much smaller GLUCOLD study (P = .079). Patients with AHR had generally reduced burden of systemic inflammatory biomarkers than did those without AHR. CONCLUSIONS: AHR is common in patients with mild-to-moderate COPD, affecting 1 in 4 patients and identifies a distinct subset of patients who have increased risk of disease progression and mortality. AHR may represent a spectrum of the asthma-COPD overlap phenotype that urgently requires disease modification.


Subject(s)
Asthma/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiratory Hypersensitivity/epidemiology , Adult , Aged , Asthma/diagnosis , Asthma/mortality , Biomarkers/metabolism , Humans , Inflammation Mediators/metabolism , Middle Aged , Netherlands , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/mortality , Respiratory Hypersensitivity/diagnosis , Respiratory Hypersensitivity/mortality , Risk , Smoking/adverse effects , Spirometry , Survival Analysis , Syndrome
15.
Thorax ; 71(3): 216-22, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25777587

ABSTRACT

BACKGROUND: Despite the significant morbidity and mortality related to pulmonary exacerbations in cystic fibrosis (CF), there remains no reliable predictor of imminent exacerbation. OBJECTIVE: To identify blood-based biomarkers to predict imminent (<4 months from stable blood draw) CF pulmonary exacerbations using targeted proteomics. METHODS: 104 subjects provided plasma samples when clinically stable and were randomly split into discovery (n=70) and replication (n=34) cohorts. Multiple reaction monitoring mass spectrometry (MRM-MS) was used to measure 117 peptides (79 proteins) from plasma. Plasma proteins with differential abundance between subjects who did versus did not develop an imminent exacerbation were analysed and proteins with fold difference >1.5 between the groups were included in an MRM-MS classifier model to predict imminent exacerbations. Performance characteristics were compared with clinical predictors and candidate plasma protein biomarkers. RESULTS: Six proteins were included in the final MRM-MS protein panel. The area under the curve (AUC) for the prediction of imminent exacerbations was highest for the MRM-MS protein panel (AUC 0.74) in comparison to FEV1% predicted (AUC 0.55) and the top candidate plasma protein biomarkers, including C-reactive protein (AUC 0.61) and interleukin-6 (AUC 0.60). The MRM-MS protein panel performed similarly in the replication cohort (AUC 0.73). CONCLUSIONS: Using MRM-MS, a six-protein panel measured from plasma can distinguish individuals with versus without an imminent exacerbation. With further replication and assay development, this biomarker panel may be clinically applicable for prediction of exacerbations in individuals with CF.


Subject(s)
Biomarkers/blood , Blood Proteins/analysis , Cystic Fibrosis/blood , Mass Spectrometry/methods , Monitoring, Physiologic/methods , Proteomics/methods , Adult , Disease Progression , Female , Follow-Up Studies , Humans , Male , Retrospective Studies , Time Factors
16.
Eur Respir J ; 48(1): 205-15, 2016 07.
Article in English | MEDLINE | ID: mdl-27009170

ABSTRACT

Epidemiological studies have implicated lung inflammation as a risk factor for acute cardiovascular events, but the underlying mechanisms linking lung injury with cardiovascular events are largely unknown.Our objective was to develop a novel murine model of acute atheromatous plaque rupture related to lung inflammation and to investigate the role of neutrophils in this process.Lipopolysaccharide (LPS; 3 mg·kg(-1)) or saline (control) was instilled directly into the lungs of male apolipoprotein E-null C57BL/6J mice following 8 weeks of a Western-type diet. 24 h later, atheromas in the right brachiocephalic trunk were assessed for stability ex vivo using high-resolution optical projection tomography and histology. 68% of LPS-exposed mice developed vulnerable plaques, characterised by intraplaque haemorrhage and thrombus, versus 12% of saline-exposed mice (p=0.0004). Plaque instability was detectable as early as 8 h post-intratracheal LPS instillation, but not with intraperitoneal instillation. Depletion of circulating neutrophils attenuated plaque rupture.We have established a novel plaque rupture model related to lung injury induced by intratracheal exposure to LPS. In this model, neutrophils play an important role in both lung inflammation and plaque rupture. This model could be useful for screening therapeutic targets to prevent acute vascular events related to lung inflammation.


Subject(s)
Apolipoproteins E/genetics , Cytokines/metabolism , Neutrophils/cytology , Plaque, Atherosclerotic/pathology , Animals , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Tomography, Optical
17.
HIV Med ; 17(3): 178-87, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26268373

ABSTRACT

OBJECTIVES: Chronic obstructive pulmonary disease (COPD) and coronary artery disease are inflammatory states with a significant clinical impact. The relationship between them has not been investigated in patients with HIV infection. We assessed the presence of subclinical emphysema and coronary artery disease using chest computed tomography (CT) imaging in a cohort of HIV-infected patients receiving antiretroviral therapy. METHODS: Gated chest CT scans were performed in 1446 consecutive patients to assess the presence and severity of coronary artery calcium (CAC) (classified as a score of 0, 1-100 or > 100) and emphysema (classified using a visual semiquantitative scale: 0, absent; 1-4, mild to moderate; > 4, severe). Univariable and multivariable logistic regression analyses were performed to identify factors independently associated with CAC and emphysema. RESULTS: The emphysema score was significantly higher in patients with CAC scores of 1-100 and > 100 compared with those with a CAC score of 0. After adjustments for age, sex, smoking status, pack-years of smoking, visceral adiposity and duration of HIV infection, the presence of any emphysema was significantly associated with a CAC score > 0 [odds ratio (OR) 1.43; 95% confidence interval (CI) 1.08-1.88; P = 0.012]. The association persisted after adjustment for the Framingham risk score (OR 1.52; 95% CI 1.16-1.99; P = 0.002). There was a dose-dependent effect in the association between emphysema score and CAC score. CONCLUSIONS: In this cross-sectional study of HIV-infected patients, there was an independent association between emphysema and CAC, after adjustment for traditional cardiovascular risk factors, suggesting a common pathogenesis of these chronic inflammatory conditions in a chronic inflammatory disease such as HIV infection.


Subject(s)
Coronary Artery Disease/diagnosis , HIV Infections/complications , HIV Infections/diagnostic imaging , Pulmonary Emphysema/diagnosis , Adult , Aged , Antiretroviral Therapy, Highly Active , Female , HIV Infections/drug therapy , Humans , Male , Middle Aged , Risk Factors , Tomography, X-Ray Computed
18.
CMAJ ; 188(14): 1004-1011, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27486205

ABSTRACT

BACKGROUND: The rate of lung-function decline in chronic obstructive pulmonary disease (COPD) varies substantially among individuals. We sought to develop and validate an individualized prediction model for forced expiratory volume at 1 second (FEV1) in current smokers with mild-to-moderate COPD. METHODS: Using data from a large long-term clinical trial (the Lung Health Study), we derived mixed-effects regression models to predict future FEV1 values over 11 years according to clinical traits. We modelled heterogeneity by allowing regression coefficients to vary across individuals. Two independent cohorts with COPD were used for validating the equations. RESULTS: We used data from 5594 patients (mean age 48.4 yr, 63% men, mean baseline FEV1 2.75 L) to create the individualized prediction equations. There was significant between-individual variability in the rate of FEV1 decline, with the interval for the annual rate of decline that contained 95% of individuals being -124 to -15 mL/yr for smokers and -83 to 15 mL/yr for sustained quitters. Clinical variables in the final model explained 88% of variation around follow-up FEV1. The C statistic for predicting severity grades was 0.90. Prediction equations performed robustly in the 2 external data sets. INTERPRETATION: A substantial part of individual variation in FEV1 decline can be explained by easily measured clinical variables. The model developed in this work can be used for prediction of future lung health in patients with mild-to-moderate COPD. TRIAL REGISTRATION: Lung Health Study - ClinicalTrials.gov, no. NCT00000568; Pan-Canadian Early Detection of Lung Cancer Study - ClinicalTrials.gov, no. NCT00751660.


Subject(s)
Individuality , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Smoking Cessation , Smoking/physiopathology , Adult , Canada , Disease Progression , Female , Forced Expiratory Volume , Humans , Longitudinal Studies , Male , Middle Aged
19.
BMC Pulm Med ; 16(1): 142, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27829448

ABSTRACT

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is an important comorbidity in patients living with human immunodeficiency virus (HIV). Previous bacterial microbiome studies have shown increased abundance of specific bacterium, like Tropheryma whipplei, and no overall community differences. However, the host response to the lung microbiome is unknown in patients infected with HIV. METHODS: Two bronchial brush samples were obtained from 21 HIV-infected patients. One brush was used for bacterial microbiome analysis using the Illumina MiSeqTM platform, while the other was used to evaluate gene expression patterns of the host using the Affymetrix Human Gene ST 2.0 array. Weighted gene co-expression network analysis was used to determine the relationship between the bacterial microbiome and host gene expression response. RESULTS: The Shannon Diversity was inversely related to only one gene expression module (p = 0.02); whereas evenness correlated with five different modules (p ≤ 0.05). After FDR correction only the Firmicutes phylum was significantly correlated with any modules (FDR < 0.05). These modules were enriched for cilia, transcription regulation, and immune response. Specific operational taxonomic units (OTUs), such as OTU4 (Pasteurellaceae), were able to distinguish HIV patients with and without COPD and severe emphysema. CONCLUSION: These data support the hypothesis that the bacterial microbiome in HIV lungs is associated with specific host immune responses. Whether or not these responses are also seen in non-HIV infected individuals needs to be addressed in future studies.


Subject(s)
HIV Infections/complications , Lung/microbiology , Microbiota , Pulmonary Disease, Chronic Obstructive/microbiology , Adult , Aged , Bacteria/classification , Epithelial Cells/cytology , Female , Gene Expression , HIV Infections/microbiology , Humans , Lung/cytology , Male , Microarray Analysis , Middle Aged , Pulmonary Disease, Chronic Obstructive/immunology , RNA, Ribosomal, 16S/genetics , Tomography, X-Ray Computed
20.
Am J Respir Crit Care Med ; 188(12): 1413-9, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24245748

ABSTRACT

RATIONALE: Club (Clara) cell protein 16 (CC-16) is a protein that is synthesized predominantly in the lungs and is detectable in serum. Its expression decreases with lung injury and smoking, and is thus a marker of bronchial cell dysfunction. OBJECTIVES: To evaluate the possibility of using serum CC-16 as a biomarker for disease progression in chronic obstructive pulmonary disease (COPD). METHODS: We measured serum CC-16 levels from 4,724 subjects with mild-to-moderate airflow limitation in the Lung Health Study. Using a linear regression model, we determined the relationship of serum CC-16 concentrations to decline in lung function over 9 years. In addition, to determine whether CC-16 plays a major role in the pathogenesis of mild COPD, we exposed CC-16-deficient (-/-) mice to 6 months of cigarette smoke. MEASUREMENTS AND MAIN RESULTS: Reduced serum concentrations of CC-16 were associated with accelerated decline in FEV1 over 9 years (P < 0.0001), and this association persisted after adjustments for age, sex, race, smoking status, airway reactivity, body mass index, and baseline FEV1 (P = 0.0002). However, CC-16(-/-) mice did not demonstrate an enhanced risk of emphysema or small airway remodeling in response to cigarette smoke. CONCLUSIONS: Serum CC-16 is associated with disease progression, and may assist in the identification of "rapid progressors." However, the absence of CC-16 does not appear to modify the risk of cigarette-related COPD in mice.


Subject(s)
Disease Progression , Pulmonary Disease, Chronic Obstructive/blood , Uteroglobin/blood , Adult , Animals , Biomarkers/blood , Female , Follow-Up Studies , Humans , Linear Models , Logistic Models , Male , Mice , Mice, Knockout , Middle Aged , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/physiopathology , ROC Curve , Risk Factors , Smoking/adverse effects , Spirometry , Tobacco Smoke Pollution/adverse effects , Uteroglobin/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL