Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(1): 71-91, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36493769

ABSTRACT

Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.


Subject(s)
Cleft Lip , Cleft Palate , DNA Copy Number Variations , Humans , Cleft Lip/genetics , Cleft Palate/genetics , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors/genetics , Phenotype , Transcription Factors/genetics
2.
J Neurogenet ; 36(2-3): 65-73, 2022.
Article in English | MEDLINE | ID: mdl-35775303

ABSTRACT

Previous studies have demonstrated the striking mutational effects of the Drosophila planar cell polarity gene prickle (pk) on larval motor axon microtubule-mediated vesicular transport and on adult epileptic behavior associated with neuronal circuit hyperexcitability. Mutant alleles of the prickle-prickle (pkpk) and prickle-spiny-legs (pksple) isoforms (hereafter referred to as pk and sple alleles, respectively) exhibit differential phenotypes. While both pk and sple affect larval motor axon transport, only sple confers motor circuit and behavior hyperexcitability. However, mutations in the two isoforms apparently counteract to ameliorate adult motor circuit and behavioral hyperexcitability in heteroallelic pkpk/pksple flies. We have further investigated the consequences of altered axonal transport in the development and function of the larval neuromuscular junction (NMJ). We uncovered robust dominant phenotypes in both pk and sple alleles, including synaptic terminal overgrowth (as revealed by anti-HRP and -Dlg immunostaining) and poor vesicle release synchronicity (as indicated by synaptic bouton focal recording). However, we observed recessive alteration of synaptic transmission only in pk/pk larvae, i.e. increased excitatory junctional potential (EJP) amplitude in pk/pk but not in pk/+ or sple/sple. Interestingly, for motor terminal excitability sustained by presynaptic Ca2+ channels, both pk and sple exerted strong effects to produce prolonged depolarization. Notably, only sple acted dominantly whereas pk/+ appeared normal, but was able to suppress the sple phenotypes, i.e. pk/sple appeared normal. Our observations contrast the differential roles of the pk and sple isoforms and highlight their distinct, variable phenotypic expression in the various structural and functional aspects of the larval NMJ.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , Axonal Transport , Larva , Neuromuscular Junction/metabolism , Protein Isoforms/genetics , Seizures/genetics , Seizures/metabolism , Drosophila melanogaster/physiology
3.
PLoS Genet ; 13(3): e1006636, 2017 03.
Article in English | MEDLINE | ID: mdl-28249010

ABSTRACT

Mutations in the gene encoding transcription factor TFAP2A result in pigmentation anomalies in model organisms and premature hair graying in humans. However, the pleiotropic functions of TFAP2A and its redundantly-acting paralogs have made the precise contribution of TFAP2-type activity to melanocyte differentiation unclear. Defining this contribution may help to explain why TFAP2A expression is reduced in advanced-stage melanoma compared to benign nevi. To identify genes with TFAP2A-dependent expression in melanocytes, we profile zebrafish tissue and mouse melanocytes deficient in Tfap2a, and find that expression of a small subset of genes underlying pigmentation phenotypes is TFAP2A-dependent, including Dct, Mc1r, Mlph, and Pmel. We then conduct TFAP2A ChIP-seq in mouse and human melanocytes and find that a much larger subset of pigmentation genes is associated with active regulatory elements bound by TFAP2A. These elements are also frequently bound by MITF, which is considered the "master regulator" of melanocyte development. For example, the promoter of TRPM1 is bound by both TFAP2A and MITF, and we show that the activity of a minimal TRPM1 promoter is lost upon deletion of the TFAP2A binding sites. However, the expression of Trpm1 is not TFAP2A-dependent, implying that additional TFAP2 paralogs function redundantly to drive melanocyte differentiation, which is consistent with previous results from zebrafish. Paralogs Tfap2a and Tfap2b are both expressed in mouse melanocytes, and we show that mouse embryos with Wnt1-Cre-mediated deletion of Tfap2a and Tfap2b in the neural crest almost completely lack melanocytes but retain neural crest-derived sensory ganglia. These results suggest that TFAP2 paralogs, like MITF, are also necessary for induction of the melanocyte lineage. Finally, we observe a genetic interaction between tfap2a and mitfa in zebrafish, but find that artificially elevating expression of tfap2a does not increase levels of melanin in mitfa hypomorphic or loss-of-function mutants. Collectively, these results show that TFAP2 paralogs, operating alongside lineage-specific transcription factors such as MITF, directly regulate effectors of terminal differentiation in melanocytes. In addition, they suggest that TFAP2A activity, like MITF activity, has the potential to modulate the phenotype of melanoma cells.


Subject(s)
Cell Differentiation/genetics , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Transcription Factor AP-2/genetics , Animals , Base Sequence , Binding Sites/genetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Humans , Mice, Knockout , Microphthalmia-Associated Transcription Factor/metabolism , Microscopy, Confocal , Mutation , Pigmentation/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Transcription Factor AP-2/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
PLoS Genet ; 11(3): e1005022, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25763846

ABSTRACT

Epilepsy is a common disabling disease with complex, multifactorial genetic and environmental etiology. The small fraction of epilepsies subject to Mendelian inheritance offers key insight into epilepsy disease mechanisms; and pathologies brought on by mutations in a single gene can point the way to generalizable therapeutic strategies. Mutations in the PRICKLE genes can cause seizures in humans, zebrafish, mice, and flies, suggesting the seizure-suppression pathway is evolutionarily conserved. This pathway has never been targeted for novel anti-seizure treatments. Here, the mammalian PRICKLE-interactome was defined, identifying prickle-interacting proteins that localize to synapses and a novel interacting partner, USP9X, a substrate-specific de-ubiquitinase. PRICKLE and USP9X interact through their carboxy-termini; and USP9X de-ubiquitinates PRICKLE, protecting it from proteasomal degradation. In forebrain neurons of mice, USP9X deficiency reduced levels of Prickle2 protein. Genetic analysis suggests the same pathway regulates Prickle-mediated seizures. The seizure phenotype was suppressed in prickle mutant flies by the small-molecule USP9X inhibitor, Degrasyn/WP1130, or by reducing the dose of fat facets a USP9X orthologue. USP9X mutations were identified by resequencing a cohort of patients with epileptic encephalopathy, one patient harbored a de novo missense mutation and another a novel coding mutation. Both USP9X variants were outside the PRICKLE-interacting domain. These findings demonstrate that USP9X inhibition can suppress prickle-mediated seizure activity, and that USP9X variants may predispose to seizures. These studies point to a new target for anti-seizure therapy and illustrate the translational power of studying diseases in species across the evolutionary spectrum.


Subject(s)
Seizures/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Drosophila melanogaster , Humans , Mass Spectrometry , Mice , Seizures/drug therapy , Ubiquitin Thiolesterase/genetics
5.
Plant Physiol ; 171(4): 2648-58, 2016 08.
Article in English | MEDLINE | ID: mdl-27307257

ABSTRACT

As maize (Zea mays) plants undergo vegetative phase change from juvenile to adult, they both exhibit heteroblasty, an abrupt change in patterns of leaf morphogenesis, and gain the ability to produce flowers. Both processes are under the control of microRNA156 (miR156), whose levels decline at the end of the juvenile phase. Gain of the ability to flower is conferred by the expression of miR156 targets that encode SQUAMOSA PROMOTER-BINDING transcription factors, which, when derepressed in the adult phase, induce the expression of MADS box transcription factors that promote maturation and flowering. How gene expression, including targets of those microRNAs, differs between the two phases remains an open question. Here, we compare transcript levels in primordia that will develop into juvenile or adult leaves to identify genes that define these two developmental states and may influence vegetative phase change. In comparisons among successive leaves at the same developmental stage, plastochron 6, three-fourths of approximately 1,100 differentially expressed genes were more highly expressed in primordia of juvenile leaves. This juvenile set was enriched in photosynthetic genes, particularly those associated with cyclic electron flow at photosystem I, and in genes involved in oxidative stress and retrograde redox signaling. Pathogen- and herbivory-responsive pathways including salicylic acid and jasmonic acid also were up-regulated in juvenile primordia; indeed, exogenous application of jasmonic acid delayed both the appearance of adult traits and the decline in the expression of miR156-encoding loci in maize seedlings. We hypothesize that the stresses associated with germination promote juvenile patterns of differentiation in maize.


Subject(s)
Cyclopentanes/pharmacology , Genes, Plant , Oxylipins/pharmacology , Stress, Physiological/genetics , Up-Regulation/genetics , Zea mays/growth & development , Zea mays/genetics , Cluster Analysis , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Nucleotide Motifs/genetics , Phloem/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/drug effects , Up-Regulation/drug effects , Zea mays/drug effects
6.
Proc Natl Acad Sci U S A ; 111(30): 11187-92, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25024231

ABSTRACT

Recent analyses in flies, mice, zebrafish, and humans showed that mutations in prickle orthologs result in epileptic phenotypes, although the mechanism responsible for generating the seizures was unknown. Here, we show that Prickle organizes microtubule polarity and affects their growth dynamics in axons of Drosophila neurons, which in turn influences both anterograde and retrograde vesicle transport. We also show that enhancement of the anterograde transport mechanism is the cause of the seizure phenotype in flies, which can be suppressed by reducing the level of either of two Kinesin motor proteins responsible for anterograde vesicle transport. Additionally, we show that seizure-prone prickle mutant flies have electrophysiological defects similar to other fly mutants used to study seizures, and that merely altering the balance of the two adult prickle isoforms in neurons can predispose flies to seizures. These data reveal a previously unidentified pathway in the pathophysiology of seizure disorders and provide evidence for a more generalized cellular mechanism whereby Prickle mediates polarity by influencing microtubule-mediated transport.


Subject(s)
Axons/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , LIM Domain Proteins/metabolism , Microtubules/metabolism , Seizures/metabolism , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , LIM Domain Proteins/genetics , Mice , Microtubules/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Seizures/genetics
7.
J Am Soc Nephrol ; 27(10): 3175-3186, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26940096

ABSTRACT

The contribution of genetic variation to urinary tract infection (UTI) risk in children with vesicoureteral reflux is largely unknown. The innate immune system, which includes antimicrobial peptides, such as the α-defensins, encoded by DEFA1A3, is important in preventing UTIs but has not been investigated in the vesicoureteral reflux population. We used quantitative real-time PCR to determine DEFA1A3 DNA copy numbers in 298 individuals with confirmed UTIs and vesicoureteral reflux from the Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Study and 295 controls, and we correlated copy numbers with outcomes. Outcomes studied included reflux grade, UTIs during the study on placebo or antibiotics, bowel and bladder dysfunction, and renal scarring. Overall, 29% of patients and 16% of controls had less than or equal to five copies of DEFA1A3 (odds ratio, 2.09; 95% confidence interval, 1.40 to 3.11; P<0.001). For each additional copy of DEFA1A3, the odds of recurrent UTI in patients receiving antibiotic prophylaxis decreased by 47% when adjusting for vesicoureteral reflux grade and bowel and bladder dysfunction. In patients receiving placebo, DEFA1A3 copy number did not associate with risk of recurrent UTI. Notably, we found that DEFA1A3 is expressed in renal epithelium and not restricted to myeloid-derived cells, such as neutrophils. In conclusion, low DEFA1A3 copy number associated with recurrent UTIs in subjects in the RIVUR Study randomized to prophylactic antibiotics, providing evidence that copy number polymorphisms in an antimicrobial peptide associate with UTI risk.


Subject(s)
Peptides, Cyclic/genetics , Polymorphism, Genetic , Urinary Tract Infections/genetics , Vesico-Ureteral Reflux/genetics , alpha-Defensins/physiology , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Risk Factors , Urinary Tract Infections/etiology , Vesico-Ureteral Reflux/complications , alpha-Defensins/genetics
8.
Mol Biol Evol ; 32(3): 585-99, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25525214

ABSTRACT

Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced-leader (SL) RNA. Trans-splicing also occurs at monocistronic transcripts. The phlyogenetically sporadic appearance of trans-splicing and operons has made the driving force(s) for their evolution in metazoans unclear. Previous work has proposed that germline expression drives operon organization in Caenorhabditis elegans, and a recent hypothesis proposes that operons provide an evolutionary advantage via the conservation of transcriptional machinery during recovery from growth arrested states. Using a modified cap analysis of gene expression protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica. Tiled microarrays revealed the expression dynamics of trans-spliced genes across development and during recovery from growth arrest. Operons did not facilitate recovery from growth arrest in O. dioica. Instead, we found that trans-spliced transcripts were predominantly maternal. We then analyzed data from C. elegans and Ciona intestinalis and found that an enrichment of trans-splicing and operon gene expression in maternal mRNA is shared between all three species, suggesting that this may be a driving force for operon evolution in metazoans. Furthermore, we found that the majority of known terminal oligopyrimidine (TOP) mRNAs are trans-spliced in O. dioica and that the SL contains a TOP-like motif. This suggests that the SL in O. dioica confers nutrient-dependent translational control to trans-spliced mRNAs via the TOR-signaling pathway. We hypothesize that SL-trans-splicing provides an evolutionary advantage in species that depend on translational control for regulating early embryogenesis, growth and oocyte production in response to nutrient levels.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Operon/genetics , Trans-Splicing/genetics , Animals , Caenorhabditis elegans/genetics , Ciona intestinalis/genetics , Female , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Urochordata/genetics
9.
Development ; 140(17): 3613-23, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23884443

ABSTRACT

Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding factor required for gypsy insulator function and female germline development in Drosophila. The insulator function of the gypsy retrotransposon depends on Su(Hw) binding to clustered Su(Hw) binding sites (SBSs) and recruitment of the insulator proteins Centrosomal Protein 190 kD (CP190) and Modifier of mdg4 67.2 kD (Mod67.2). By contrast, the Su(Hw) germline function involves binding to non-clustered SBSs and does not require CP190 or Mod67.2. Here, we identify Su(Hw) target genes, using genome-wide analyses in the ovary to uncover genes with an ovary-bound SBS that are misregulated upon Su(Hw) loss. Most Su(Hw) target genes demonstrate enriched expression in the wild-type CNS. Loss of Su(Hw) leads to increased expression of these CNS-enriched target genes in the ovary and other tissues, suggesting that Su(Hw) is a repressor of neural genes in non-neural tissues. Among the Su(Hw) target genes is RNA-binding protein 9 (Rbp9), a member of the ELAV/Hu gene family. Su(Hw) regulation of Rbp9 appears to be insulator independent, as Rbp9 expression is unchanged in a genetic background that compromises the functions of the CP190 and Mod67.2 insulator proteins, even though both localize to Rbp9 SBSs. Rbp9 misregulation is central to su(Hw)(-/-) sterility, as Rbp9(+/-), su(Hw)(-/-) females are fertile. Eggs produced by Rbp9(+/-), su(Hw)(-/-) females show patterning defects, revealing a somatic requirement for Su(Hw) in the ovary. Our studies demonstrate that Su(Hw) is a versatile transcriptional regulatory protein with an essential developmental function involving transcriptional repression.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , Gene Expression Regulation, Developmental/physiology , Oogenesis/physiology , Ovary/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites/genetics , Chromatin Immunoprecipitation , DNA Primers/genetics , Drosophila/ultrastructure , Drosophila Proteins/genetics , Female , Gene Expression Regulation, Developmental/genetics , Immunohistochemistry , Microarray Analysis , Microscopy, Electron, Scanning , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oogenesis/genetics , Polymerase Chain Reaction , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics
10.
PLoS Genet ; 14(7): e1007480, 2018 07.
Article in English | MEDLINE | ID: mdl-30024880
11.
Hum Mol Genet ; 22(6): 1097-111, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23223018

ABSTRACT

Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development.


Subject(s)
Cell Polarity , DNA Copy Number Variations , Glypicans/genetics , Spinal Dysraphism/genetics , Animals , Cohort Studies , Female , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Humans , Male , Neural Tube/embryology , Neural Tube/metabolism , Spinal Dysraphism/embryology , Spinal Dysraphism/physiopathology , White People/genetics , Zebrafish
12.
Am J Med Genet A ; 167A(3): 545-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25691407

ABSTRACT

The popliteal pterygia syndromes are a distinct subset of the hundreds of Mendelian orofacial clefting syndromes. Popliteal pterygia syndromes have considerable variability in severity and in the associated phenotypic features but are all characterized by cutaneous webbing across one or more major joints, cleft lip and/or palate, syndactyly, and genital malformations. Heterozygous mutations in IRF6 cause popliteal pterygium syndrome (PPS) while homozygous mutations in RIPK4 or CHUK (IKKA) cause the more severe Bartsocas-Papas syndrome (BPS) and Cocoon syndrome, respectively. In this study, we report mutations in six pedigrees with children affected with PPS or BPS. Using a combination of Sanger and exome sequencing, we report the first case of an autosomal recessive popliteal pterygium syndrome caused by homozygous mutation of IRF6 and the first case of uniparental disomy of chromosome 21 leading to a recessive disorder. We also demonstrate that mutations in RIPK4 can cause features with a range of severity along the PPS-BPS spectrum and that mutations in IKKA can cause a range of features along the BPS-Cocoon spectrum. Our findings have clinical implications for genetic counseling of families with pterygia syndromes and further implicate IRF6, RIPK4, and CHUK (IKKA) in potentially interconnected pathways governing epidermal and craniofacial development.


Subject(s)
Cleft Lip/diagnosis , Cleft Lip/genetics , Cleft Palate/diagnosis , Cleft Palate/genetics , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Fingers/abnormalities , Genetic Association Studies , Knee Joint/abnormalities , Lower Extremity Deformities, Congenital/diagnosis , Lower Extremity Deformities, Congenital/genetics , Phenotype , Syndactyly/diagnosis , Syndactyly/genetics , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics , Comparative Genomic Hybridization , DNA Mutational Analysis , Exome , Female , Genes, Recessive , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , I-kappa B Kinase/genetics , Infant , Infant, Newborn , Interferon Regulatory Factors/genetics , Knee/abnormalities , Male , Mutation , Pedigree , Protein Serine-Threonine Kinases/genetics
13.
Front Zool ; 12: 18, 2015.
Article in English | MEDLINE | ID: mdl-26213557

ABSTRACT

BACKGROUND: Predator-induced defences are a prominent example of phenotypic plasticity found from single-celled organisms to vertebrates. The water flea Daphnia pulex is a very convenient ecological genomic model for studying predator-induced defences as it exhibits substantial morphological changes under predation risk. Most importantly, however, genetically identical clones can be transcriptionally profiled under both control and predation risk conditions and be compared due to the availability of the sequenced reference genome. Earlier gene expression analyses of candidate genes as well as a tiled genomic microarray expression experiment have provided insights into some genes involved in predator-induced phenotypic plasticity. Here we performed the first RNA-Seq analysis to identify genes that were differentially expressed in defended vs. undefended D. pulex specimens in order to explore the genetic mechanisms underlying predator-induced defences at a qualitatively novel level. RESULTS: We report 230 differentially expressed genes (158 up- and 72 down-regulated) identified in at least two of three different assembly approaches. Several of the differentially regulated genes belong to families of paralogous genes. The most prominent classes amongst the up-regulated genes include cuticle genes, zinc-metalloproteinases and vitellogenin genes. Furthermore, several genes from this group code for proteins recruited in chromatin-reorganization or regulation of the cell cycle (cyclins). Down-regulated gene classes include C-type lectins, proteins involved in lipogenesis, and other families, some of which encode proteins with no known molecular function. CONCLUSIONS: The RNA-Seq transcriptome data presented in this study provide important insights into gene regulatory patterns underlying predator-induced defences. In particular, we characterized different effector genes and gene families found to be regulated in Daphnia in response to the presence of an invertebrate predator. These effector genes are mostly in agreement with expectations based on observed phenotypic changes including morphological alterations, i.e., expression of proteins involved in formation of protective structures and in cuticle strengthening, as well as proteins required for resource re-allocation. Our findings identify key genetic pathways associated with anti-predator defences.

14.
Nucleic Acids Res ; 41(Database issue): D845-53, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23185044

ABSTRACT

We report the development of OikoBase (http://oikoarrays.biology.uiowa.edu/Oiko/), a tiling array-based genome browser resource for Oikopleura dioica, a metazoan belonging to the urochordates, the closest extant group to vertebrates. OikoBase facilitates retrieval and mining of a variety of useful genomics information. First, it includes a genome browser which interrogates 1260 genomic sequence scaffolds and features gene, transcript and CDS annotation tracks. Second, we annotated gene models with gene ontology (GO) terms and InterPro domains which are directly accessible in the browser with links to their entries in the GO (http://www.geneontology.org/) and InterPro (http://www.ebi.ac.uk/interpro/) databases, and we provide transcript and peptide links for sequence downloads. Third, we introduce the transcriptomics of a comprehensive set of developmental stages of O. dioica at high resolution and provide downloadable gene expression data for all developmental stages. Fourth, we incorporate a BLAST tool to identify homologs of genes and proteins. Finally, we include a tutorial that describes how to use OikoBase as well as a link to detailed methods, explaining the data generation and analysis pipeline. OikoBase will provide a valuable resource for research in chordate development, genome evolution and plasticity and the molecular ecology of this important marine planktonic organism.


Subject(s)
Databases, Genetic , Genomics , Transcriptome , Urochordata/genetics , Animals , Data Mining , Gene Expression Profiling , Internet , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Urochordata/embryology , Urochordata/growth & development
15.
Nat Genet ; 38(10): 1151-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16951679

ABSTRACT

Many animal and plant genomes are transcribed much more extensively than current annotations predict. However, the biological function of these unannotated transcribed regions is largely unknown. Approximately 7% and 23% of the detected transcribed nucleotides during D. melanogaster embryogenesis map to unannotated intergenic and intronic regions, respectively. Based on computational analysis of coordinated transcription, we conservatively estimate that 29% of all unannotated transcribed sequences function as missed or alternative exons of well-characterized protein-coding genes. We estimate that 15.6% of intergenic transcribed regions function as missed or alternative transcription start sites (TSS) used by 11.4% of the expressed protein-coding genes. Identification of P element mutations within or near newly identified 5' exons provides a strategy for mapping previously uncharacterized mutations to their respective genes. Collectively, these data indicate that at least 85% of the fly genome is transcribed and processed into mature transcripts representing at least 30% of the fly genome.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Transcription, Genetic , Amino Acid Sequence , Animals , DNA, Intergenic , Drosophila Proteins/genetics , Embryo, Nonmammalian , Exons , Genome, Insect , Molecular Sequence Data , Mutation , Oligonucleotide Array Sequence Analysis , Transcription Initiation Site
16.
Am J Hum Genet ; 88(2): 138-49, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21276947

ABSTRACT

Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.


Subject(s)
Carrier Proteins/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Seizures/etiology , Tumor Suppressor Proteins/genetics , Zebrafish Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Blotting, Western , Brain/metabolism , Calcium/metabolism , Drosophila melanogaster/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Epilepsies, Myoclonic/genetics , Female , Heterozygote , Humans , Immunoenzyme Techniques , In Situ Hybridization , LIM Domain Proteins , Male , Mice , Mice, Knockout , Phenotype , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Seizures/metabolism , Zebrafish/genetics
17.
Nat Cell Biol ; 9(5): 581-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17450131

ABSTRACT

Completion of chromosome condensation is required before segregation during the mitotic cell cycle to ensure the transmission of genetic material with high fidelity in a timely fashion. In many eukaryotes this condensation is regulated by phosphorylation of histone H3 on Ser 10 (H3S10). This phosphorylation normally begins in the late-replicating pericentric heterochromatin and then spreads to the earlier replicating euchromatin. Here, we show that these phases of condensation are genetically separable in that the absence of Drosophila Myb causes cells to arrest with H3S10 phosphorylation of heterochromatin but not euchromatin. In addition, we used mosaic analysis to demonstrate that although the Myb protein can be removed in a single cell cycle, the failure of chromosome condensation occurs only after many cell divisions in the absence of Myb protein. The Myb protein is normally located in euchromatic but not heterochromatic regions of the nucleus, suggesting that Myb may be essential for a modification of euchromatin that is required for the efficient spread of chromosome condensation.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromosomes/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Mitosis/physiology , Proto-Oncogene Proteins c-myb/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Nucleus/metabolism , Drosophila/embryology , Drosophila/genetics , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Euchromatin/metabolism , Heterochromatin/metabolism , Histones/metabolism , Larva/physiology , Mutation , Phosphorylation , Proto-Oncogene Proteins c-myb/deficiency , Proto-Oncogene Proteins c-myb/genetics , Serine/metabolism
18.
PLoS Genet ; 7(10): e1002339, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22028675

ABSTRACT

In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic "hotspot" regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Embryonic Development/genetics , Gene Regulatory Networks , Transcription Factors/genetics , Transcriptional Activation/genetics , Animals , Binding Sites/genetics , Blastoderm/embryology , Blastoderm/growth & development , Body Patterning/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Nuclear Proteins , Nucleotide Motifs/genetics , Promoter Regions, Genetic , Protein Binding/genetics , Sex Determination Processes/genetics , Transcription Factors/metabolism , Zygote/growth & development
19.
Proc Natl Acad Sci U S A ; 108(42): 17438-43, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21969598

ABSTRACT

Members of the Myb oncoprotein and E2F-Rb tumor suppressor protein families are present within the same highly conserved multiprotein transcriptional repressor complex, named either as Myb and synthetic multivuval class B (Myb-MuvB) or as Drosophila Rb E2F and Myb-interacting proteins (dREAM). We now report that the animal-specific C terminus of Drosophila Myb but not the more highly conserved N-terminal DNA-binding domain is necessary and sufficient for (i) adult viability, (ii) proper localization to chromosomes in vivo, (iii) regulation of gene expression in vivo, and (iv) interaction with the highly conserved core of the MuvB/dREAM transcriptional repressor complex. In addition, we have identified a conserved peptide motif that is required for this interaction. Our results imply that an ancient function of Myb in regulating G2/M genes in both plants and animals appears to have been transferred from the DNA-binding domain to the animal-specific C-terminal domain. Increased expression of B-MYB/MYBL2, the human ortholog of Drosophila Myb, correlates with poor prognosis in human patients with breast cancer. Therefore, our results imply that the specific interaction of the C terminus of Myb with the MuvB/dREAM core complex may provide an attractive target for the development of cancer therapeutics.


Subject(s)
Oncogene Proteins v-myb/chemistry , Oncogene Proteins v-myb/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Binding Sites/genetics , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , Conserved Sequence , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Evolution, Molecular , Female , Genes, myb , Humans , Male , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Oncogene Proteins v-myb/metabolism , Protein Structure, Tertiary , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Homology, Amino Acid , Trans-Activators/genetics
20.
Hum Mutat ; 34(8): 1075-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23674478

ABSTRACT

We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders.


Subject(s)
Dandy-Walker Syndrome/genetics , Encephalocele/genetics , Laminin/genetics , Membrane Glycoproteins/genetics , Mutation , Exome , Extracellular Matrix/genetics , Humans , Laminin/chemistry , Laminin/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Protein Structure, Tertiary , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL