Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686458

ABSTRACT

Hydrogen sulfide (H2S), synthesized by cystathionine gamma-lyase (Cth), contributes to the inflammatory response observed in sepsis. This study examines the effect of Cth-derived H2S in adhesion molecules on endothelial cells of vital organs in mice in a cecal ligation puncture (CLP)-induced model of sepsis, using two different and complementary approaches: Cth gene deletion and pharmacological inhibition. Our findings revealed a decreased level of H2S-synthesizing activity (via Cth) in both Cth-/- mice and PAG-treated wild-type (WT) mice following CLP-induced sepsis. Both treatment groups had reduced MPO activity and expression of chemokines (MCP-1 and MIP-2α), adhesion molecules (ICAM-1 and VCAM-1), ERK1/2 phosphorylation, and NF-κB in the liver and lung compared with in CLP-WT mice. Additionally, we found that PAG treatment in Cth-/- mice had no additional effect on the expression of ERK1/2 phosphorylation, NF-κB, or the production of chemokines and adhesion molecules in the liver and lung compared to Cth-/- mice following CLP-induced sepsis. The WT group with sepsis had an increased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung than the WT sham-operated control. The Cth-/-, PAG-treated WT, and Cth-/- groups of mice showed decreased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung following sepsis. Inhibition of H2S production via both approaches reduced adhesion molecule expression on endothelial cells and reduced liver and lung injury in mice with sepsis. In conclusion, this study demonstrates that H2S has an important role in the pathogenesis of sepsis and validates PAG use as a suited tool for investigating the Cth/H2S-signalling axis in sepsis.


Subject(s)
Cystathionine gamma-Lyase , Sepsis , Animals , Mice , Cell Adhesion Molecules , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/genetics , Endothelial Cells , Gene Deletion , NF-kappa B , Sepsis/drug therapy , Sepsis/genetics
2.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955767

ABSTRACT

Hydrogen sulfide (H2S) and substance P (SP) are known from animal models and in vitro studies as proinflammatory mediators. In this study, peripheral blood concentrations of H2S and SP were measured in patients with Escherichia coli or Klebsiella pneumoniae bacteraemia. Fifty patients were recruited from general wards at Christchurch Hospital, during 2020-2021. Samples from age- and sex-matched healthy subjects previously recruited as controls for studies of cardiovascular disease were used as controls. The concentrations of H2S were higher than controls on day 0, day 1, and day 2, and SP was higher than controls on all 4 days. The concentrations of H2S were highest on day 0, whereas SP concentrations were higher on day 2 than other days. Interleukin-6 and C-reactive protein were significantly higher on day 0 and day 1, respectively. The concentrations of H2S and SP did not differ between 15 non-septic (SIRS 0-1) and the 35 septic subjects (SIRS ≥ 2). Substance P concentrations were higher in subjects with abdominal infection than urinary tract infections on day 0 (p = 0.0002) and day 1 (p = 0.0091). In conclusion, the peak H2S concentrations precede the SP peak in patients with Gram-negative bacteraemia, but this response varies with the site of infection.


Subject(s)
Bacteremia , Escherichia coli Infections , Hydrogen Sulfide , Animals , Escherichia coli/metabolism , Humans , Hydrogen Sulfide/metabolism , Klebsiella pneumoniae/metabolism , Substance P
3.
Adv Exp Med Biol ; 1315: 129-159, 2021.
Article in English | MEDLINE | ID: mdl-34302691

ABSTRACT

Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Humans , Inflammation , Reactive Oxygen Species , Signal Transduction
4.
Bioconjug Chem ; 29(11): 3757-3767, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30372043

ABSTRACT

Tumor-derived exosomes are bound and internalized to organ-specific cells, affecting metastasis. Heparan sulfate proteoglycans mediate the interaction between cells and exosomes. Exosome transfer to the recipient cell can be competitively blocked by heparinoids, because heparin is structurally similar to heparan sulfate. It is hypothesized that there may be structural requirements of heparinoids to attenuate the cellular uptake and metastatic activity of tumor-derived exosomes. Here, we compared the properties of unfractionated heparin (UFH), glycol-split UFH, low-molecular-weight heparin (LMWH), glycol-split LMWH, and ultra-LMWH premixed with A549-derived exosomes. Uptake of A549-derived exosomes (0.1 mg/mL) into BEAS-2B cells was significantly blocked by 0.4 mg/mL of heparinoids. Heparinoids attenuated migration of BEAS-2B cells stimulated by A549-derived exosomes. Glycol-split LMWH with no antifactor Xa activity exhibited the strongest antimigratory effects than other heparinoids. Thus, heparinoids with proper molecular weight and structure can inhibit tumor-derived exosomes, not proportionally to the anticoagulant activity.


Subject(s)
Anticoagulants/pharmacology , Exosomes/drug effects , Exosomes/metabolism , Heparin/pharmacology , Neoplasms/metabolism , A549 Cells , Anticoagulants/chemistry , Cell Line , Exosomes/pathology , Heparin/chemistry , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/pharmacology , Heparinoids/chemistry , Heparinoids/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/pathology
5.
Biomolecules ; 14(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38254684

ABSTRACT

The activation of Kupffer cells, resident macrophages in the liver, is closely associated with the inflammatory response during sepsis, which leads to multiple-organ failure. However, how Kupffer cell activation affects adhesion molecules (ICAM-1 and VCAM-1) in sepsis has not been determined. This study investigated Kupffer cell inactivation's (by gadolinium chloride; GdCl3) effects on adhesion molecule expression in CLP-induced sepsis. The induction of sepsis resulted in increased expression of liver and lung ICAM-1 and VCAM-1. GdCl3 pretreatment significantly decreased liver ICAM-1 expression but had no effect on VCAM-1 expression. In contrast, GdCl3 pretreatment had no effect on sepsis-induced increased adhesion molecule expression in the lungs. Similarly, the immunoreactivity of ICAM-1 was decreased in liver sinusoidal endothelial cells but increased in pulmonary endothelial cells in septic mice pretreated with GdCl3. Further, GdCl3 pretreatment had no effect on the immunoreactivity of VCAM-1 in endothelial cells of the liver and lungs. Hence, the findings of this study demonstrate the differential effects of Kupffer cell inactivation on liver and lung adhesion molecules and suggest the complexity of their involvement in the pathophysiology of sepsis.


Subject(s)
Kupffer Cells , Sepsis , Animals , Mice , Intercellular Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1 , Endothelial Cells , Punctures
6.
Transl Neurodegener ; 7: 3, 2018.
Article in English | MEDLINE | ID: mdl-29456842

ABSTRACT

Hydrogen Sulfide (H2S) and Nitric Oxide (NO) have become recognized as important gaseous signaling molecules with enormous pharmacological effects, therapeutic value, and central physiological roles. NO is one of the most important regulators of the pathophysiological condition in central nervous system (CNS). It is critical in the various functioning of the brain; however, beyond certain concentration/level, it is toxic. H2S was regarded as toxic gas with the smell like rotten egg. But, it is now regarded as emerging neuroprotectant and neuromodulator. Recently, the use of donors and inhibitors of these signaling molecules have helped us to identify their accurate and precise biological effects. The most abundant neurotransmitter of CNS (glutamate) is the initiator of the reaction that forms NO, and H2S is highly expressed in brain. These molecules are shedding light on the pathogenesis of various neurological disorders. This review is mainly focused on the importance of H2S and NO for normal functioning of CNS.

SELECTION OF CITATIONS
SEARCH DETAIL