Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 93(3): 446-459, 2023 03.
Article in English | MEDLINE | ID: mdl-36385395

ABSTRACT

OBJECTIVE: To investigate molecular biomarkers of a-synuclein and tau aggregation, autophagy, and inflammation in the saliva of de novo Parkinson's disease (PD) patients in comparison to healthy subjects (HS), and to correlate molecular data with clinical features of PD patients, in order to establish whether abnormalities of these parameters are associated with specific clusters of de novo PD patients, and their potential diagnostic power in differentiating PD patients from HS. METHODS: We measured total and oligomeric a-synuclein, total-tau and phosphorylated-tau, microtubule-associated protein light chain 3 beta (MAP-LC3beta), and tumor necrosis factor alpha (TNFalpha) in the saliva of 80 de novo PD patients and 62 HS, using quantitative enzyme-linked immunosorbent Assay analysis. RESULTS: Oligomeric a-synuclein, total-tau, MAP-LC3beta, and TNFalpha levels resulted significantly higher in patients with respect to HS, while no significant differences were detected for total a-synuclein or phosphorylated-tau. Phosphorylated-tau directly correlated with MAP-LC3beta, whereas it inversely correlated with TNFalpha in PD patients. An inverse correlation was detected between MAP-LC3beta and non-motor symptoms severity. Principal Component Analysis showed that molecular and clinical parameters were independent of each other in de novo PD patients. Receiver operating characteristic curve analysis reported an accurate diagnostic performance of oligomeric a-synuclein and MAP-LC3beta. The diagnostic accuracy of total a-synuclein increased when it was combined with other salivary biomarkers targeting different molecular pathways. INTERPRETATION: Our study proposes a novel biomarker panel using saliva, a non-invasive biofluid, in de novo PD patients, with implications in understanding the molecular pathways involved in PD pathogenesis and the relevance of different molecular pathways in determining clinical PD subtypes. ANN NEUROL 2023;93:446-459.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , alpha-Synuclein/metabolism , Tumor Necrosis Factor-alpha , tau Proteins , Biomarkers
2.
Hepatology ; 75(4): 797-813, 2022 04.
Article in English | MEDLINE | ID: mdl-34743371

ABSTRACT

BACKGROUND AND AIMS: Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFß receptor type I (TGFßRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS: Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFßR1 signaling, which was reduced by loss of MT1. CONCLUSIONS: Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFßR1 activation. Blocking GPR50/TGFßR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.


Subject(s)
Cholestasis , Melatonin , Animals , Cholestasis/complications , Cholestasis/drug therapy , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mice, Knockout , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism
3.
Am J Pathol ; 190(11): 2251-2266, 2020 11.
Article in English | MEDLINE | ID: mdl-32712019

ABSTRACT

Activation of the substance P (SP)/neurokinin 1 receptor (NK1R) axis triggers biliary damage/senescence and liver fibrosis in bile duct ligated and Mdr2-/- (alias Abcb4-/-) mice through enhanced transforming growth factor-ß1 (TGF-ß1) biliary secretion. Recent evidence indicates a role for miR-31 (MIR31) in TGF-ß1-induced liver fibrosis. We aimed to define the role of the SP/NK1R/TGF-ß1/miR-31 axis in regulating biliary proliferation and liver fibrosis during cholestasis. Thus, we generated a novel model with double knockout of Mdr2-/- and NK1R-/ (alias Tacr1-/-) to further address the role of the SP/NK1R axis during chronic cholestasis. In vivo studies were performed in the following 12-week-old male mice: (i) NK1R-/-; (ii) Mdr2-/-; and (iii) NK1R-/-/Mdr2-/- (Tacr1-/-/Abcb4-/-) and their corresponding wild-type controls. Liver tissues and cholangiocytes were collected, and liver damage, changes in biliary mass/senescence, and inflammation as well as liver fibrosis were evaluated by both immunohistochemistry in liver sections and real-time PCR. miR-31 expression was measured by real-time PCR in isolated cholangiocytes. Decreased ductular reaction, liver fibrosis, biliary senescence, and biliary inflammation were observed in NK1R-/-/Mdr2-/- mice compared with Mdr2-/- mice. Elevated expression of miR-31 was observed in Mdr2-/- mice, which was reduced in NK1R-/-/Mdr2-/- mice. Targeting the SP/NK1R and/or miR-31 may be a potential approach in treating human cholangiopathies, including primary sclerosing cholangitis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/deficiency , Bile Ducts , Cholangitis, Sclerosing , Liver Cirrhosis , Receptors, Neurokinin-1/deficiency , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Bile Ducts/injuries , Bile Ducts/metabolism , Bile Ducts/pathology , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/pathology , Disease Models, Animal , Gene Knockdown Techniques , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice, Knockout , Receptors, Neurokinin-1/metabolism , ATP-Binding Cassette Sub-Family B Member 4
4.
Int J Mol Sci ; 21(2)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963614

ABSTRACT

Doxorubicin represents a valuable choice for different cancers, although the severe side effects occurring at the high effective dose limits its clinical use. In the present study, potential strategies to potentiate low-dose doxorubicin efficacy, including a metronomic schedule, characterized by a short and repeated exposure to the anticancer drug, and the combination with the natural chemosensitizing sesquiterpenes ß-caryophyllene and ß-caryophyllene oxide, were assessed in human hepatoma HepG2 cells. The involvement of P-glycoprotein (P-gp) in the HepG2-chemosensitization to doxorubicin was evaluated. Also, the direct interaction of caryophyllene sesquiterpenes with P-gp was characterized by molecular docking and dynamic simulation studies. A metronomic schedule allowed us to enhance the low-dose doxorubicin cytotoxicity and the combination with caryophyllane sesquiterpenes further potentiated this effect. Also, an increased intracellular accumulation of doxorubicin and rhodamine 123 induced by caryophyllane sesquiterpenes was found, thus suggesting their interference with P-gp function. A lowered expression of P-gp induced by the combinations, with respect to doxorubicin alone, was observed too. Docking studies found that the binding site of caryophyllane sesquiterpene was next to the ATP binding domain of P-gp and that ß-caryophyllene possessed the stronger binding affinity and higher inhibition potential calculated by MM-PBSA. Present findings strengthen our hypothesis about the potential chemosensitizing power of caryophyllane sesquiterpenes and suggest that combining a chemosensitizer and a metronomic schedule can represent a suitable strategy to overcome drawbacks of doxorubicin chemotherapy while exploiting its powerful activity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Apoptosis , Carcinoma, Hepatocellular/pathology , Doxorubicin/pharmacology , Liver Neoplasms/pathology , Polycyclic Sesquiterpenes/chemistry , Sesquiterpenes/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Antibiotics, Antineoplastic/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Computer Simulation , Dose-Response Relationship, Drug , Humans , In Vitro Techniques , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Tumor Cells, Cultured
5.
Molecules ; 25(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344579

ABSTRACT

The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.


Subject(s)
Disease Susceptibility , Hepatitis, Viral, Human/etiology , Hepatitis, Viral, Human/metabolism , Iron/metabolism , Animals , Biological Transport , Disease Resistance , Disease Susceptibility/immunology , Homeostasis , Host-Pathogen Interactions/immunology , Humans , Iron-Binding Proteins/metabolism , Lactoferrin/metabolism , Liver/immunology , Liver/metabolism , Liver/pathology , Liver/virology , Organ Specificity/immunology , Protein Binding , Receptors, Cell Surface/metabolism
6.
Am J Pathol ; 188(10): 2264-2280, 2018 10.
Article in English | MEDLINE | ID: mdl-30036520

ABSTRACT

Activation of the secretin (Sct)/secretin receptor (SR) axis stimulates ductular reaction and liver fibrosis, which are hallmarks of cholangiopathies. Our aim was to define the role of Sct-regulated cellular senescence, and we demonstrated that both ductular reaction and liver fibrosis are significantly reduced in Sct-/-, SR-/-, and Sct-/-/SR-/- bile duct ligated (BDL) mice compared with BDL wild-type mice. The reduction in hepatic fibrosis in Sct-/-, SR-/-, and Sct-/-/SR-/- BDL mice was accompanied by reduced transforming growth factor-ß1 levels in serum and cholangiocyte supernatant, as well as decreased expression of markers of cellular senescence in cholangiocytes in contrast to enhanced cellular senescence in hepatic stellate cells compared with BDL wild-type mice. Secretin directly stimulated the senescence of cholangiocytes and regulated, by a paracrine mechanism, the senescence of hepatic stellate cells and liver fibrosis via modulation of transforming growth factor-ß1 biliary secretion. Targeting senescent cholangiocytes may represent a novel therapeutic approach for ameliorating hepatic fibrosis during cholestatic liver injury.


Subject(s)
Liver Cirrhosis/physiopathology , Receptors, G-Protein-Coupled/physiology , Receptors, Gastrointestinal Hormone/physiology , Secretin/metabolism , Transforming Growth Factor beta1/physiology , Animals , Bile Ducts/cytology , Cellular Senescence/physiology , Kupffer Cells/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Organ Size , RNA, Messenger/metabolism , Secretin/pharmacology
7.
Lab Invest ; 98(11): 1449-1464, 2018 11.
Article in English | MEDLINE | ID: mdl-29977037

ABSTRACT

Secretin receptor (SR), only expressed by cholangiocytes, plays a key role in the regulation of biliary damage and liver fibrosis. The aim of this study was to determine the effects of genetic depletion of SR in Mdr2-/- mice on intrahepatic biliary mass, liver fibrosis, senescence, and angiogenesis. 12 wk SR-/-, Mdr2-/-, and SR-/-/Mdr2-/- mice with corresponding wild-type mice were used for the in vivo studies. Immunohistochemistry or immunofluorescence was performed in liver sections for (i) biliary expression of SR; (ii) hematoxylin and eosin; (iii) intrahepatic biliary mass by CK-19; (iv) fibrosis by Col1a1 and α-SMA; (v) senescence by SA-ß-gal and p16; and (vi) angiogenesis by VEGF-A and CD31. Secretin (Sct) and TGF-ß1 levels were measured in serum and cholangiocyte supernatant by ELISA. In total liver, isolated cholangiocytes or HSCs, we evaluated the expression of fibrosis markers (FN-1 and Col1a1); senescence markers (p16 and CCL2); microRNA 125b and angiogenesis markers (VEGF-A, VEGFR-2, CD31, and vWF) by immunoblots and/or qPCR. In vitro, we measured the paracrine effect of cholangiocyte supernatant on the expression of senescent and fibrosis markers in human hepatic stellate cells (HHSteCs). The increased level of ductular reaction, fibrosis, and angiogenesis in Mdr2-/- mice was reduced in SR-/-/Mdr2-/- mice. Enhanced senescence levels in cholangiocytes from Mdr2-/- mice were reversed to normal in SR-/-/Mdr2-/- mice. However, senescence was decreased in HSCs from Mdr2-/- mice but returned to normal values in SR-/-/Mdr2-/- mice. In vitro treatment of HHSteCs with supernatant from cholangiocyte lacking SR (containing lower biliary levels of Sct-dependent TGF-ß1) have decreased fibrotic reaction and increased cellular senescence. Sct-induced TGF-ß1 secretion was mediated by microRNA 125b. Our data suggest that differential modulation of angiogenesis-dependent senescence of cholangiocytes and HSCs may be important for the treatment of liver fibrosis in cholangiopathies.


Subject(s)
Cellular Senescence , Cholangitis, Sclerosing/metabolism , Liver Cirrhosis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Secretin/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Humans , Liver/pathology , Male , Mice, Knockout , MicroRNAs/metabolism , Neovascularization, Physiologic , Paracrine Communication , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/genetics , Transforming Growth Factor beta1/metabolism , ATP-Binding Cassette Sub-Family B Member 4
8.
Am J Pathol ; 187(7): 1551-1565, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28502477

ABSTRACT

Hepatic fibrosis occurs during the progression of primary sclerosing cholangitis (PSC) and is characterized by accumulation of extracellular matrix proteins. Proliferating cholangiocytes and activated hepatic stellate cells (HSCs) participate in the promotion of liver fibrosis during cholestasis. Gonadotropin-releasing hormone (GnRH) is a trophic peptide hormone synthesized by hypothalamic neurons and the biliary epithelium and exerts its biological effects on cholangiocytes by interaction with the receptor subtype (GnRHR1) expressed by cholangiocytes and HSCs. Previously, we demonstrated that administration of GnRH to normal rats increased intrahepatic biliary mass (IBDM) and hepatic fibrosis. Also, miR-200b is associated with the progression of hepatic fibrosis; however, the role of the GnRH/GnRHR1/miR-200b axis in the development of hepatic fibrosis in PSC is unknown. Herein, using the mouse model of PSC (multidrug resistance gene 2 knockout), the hepatic knockdown of GnRH decreased IBDM and liver fibrosis. In vivo and in vitro administration of GnRH increased the expression of miR-200b and fibrosis markers. The GnRH/GnRHR1 axis and miR-200b were up-regulated in human PSC samples. Cetrorelix, a GnRHR1 antagonist, inhibited the expression of fibrotic genes in vitro and decreased IBDM and hepatic fibrosis in vivo. Inhibition of miR-200b decreased the expression of fibrosis genes in vitro in cholangiocyte and HSC lines. Targeting the GnRH/GnRHR1/miR-200b axis may be key for the management of hepatic fibrosis during the progression of PSC.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , Gene Expression Regulation , Gonadotropin-Releasing Hormone/metabolism , MicroRNAs/metabolism , Morpholinos/pharmacology , Receptors, LHRH/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cell Line , Cell Proliferation , Cholestasis , Disease Models, Animal , Disease Progression , Down-Regulation , Gonadotropin-Releasing Hormone/genetics , Hepatic Stellate Cells/metabolism , Humans , Liver , Liver Cirrhosis , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Receptors, LHRH/genetics , Up-Regulation , ATP-Binding Cassette Sub-Family B Member 4
9.
FASEB J ; 31(10): 4305-4324, 2017 10.
Article in English | MEDLINE | ID: mdl-28634212

ABSTRACT

Melatonin therapy or prolonged exposure to complete darkness reduces biliary hyperplasia and liver fibrosis in bile-duct-ligated (BDL) rats; however, no information exists in primary sclerosing cholangitis (PSC). Thus, we aimed to determine the therapeutic effects of prolonged dark therapy or melatonin administration on hepatic fibrosis in the multidrug resistance gene 2-knockout (Mdr2-/-) mouse model of PSC. Melatonin levels, biliary mass, liver fibrosis, angiogenesis and miR-200b expression were evaluated in wild-type and Mdr2-/- mice exposed to darkness or melatonin treatment or in male patients with PSC and healthy controls. Mdr2-/- mice were also treated with miR-200b inhibitor or control before evaluating biliary mass, liver fibrosis, and angiogenesis. After overexpression of arylalkylamine N-acetyltransferase (AANAT; the enzyme regulating melatonin synthesis) or inhibition of miR-200b in cholangiocytes and hepatic stellate cells in vitro, we evaluated angiogenesis and fibrosis gene expression. After exposure to darkness or administration of melatonin, Mdr2-/- mice show elevated serum melatonin levels and inhibition of biliary mass, along with reduction of liver fibrosis and angiogenesis. MicroRNA PCR analysis demonstrated that miR-200b expression increased in Mdr2-/- mice and patients with PSC compared with controls and decreased in Mdr2-/- mice subjected to dark exposure or melatonin treatment. Inhibition of miR-200b in Mdr2-/- ablates biliary proliferation, liver fibrosis, and angiogenesis. In vitro, overexpression of AANAT or inhibition of miR-200b in cholangiocytes and hepatic stellate cells decreased the expression of miR-200b, angiogenesis, and fibrosis genes. Dark therapy or targeting melatonin/miR-200b axis may be important in the management of biliary damage and liver fibrosis in cholangiopathies including PSC.-Wu, N., Meng, F., Zhou, T., Han, Y., Kennedy, L., Venter, J., Francis, H., DeMorrow, S., Onori, P., Invernizzi, P., Bernuzzi, F., Mancinelli, R., Gaudio, E., Franchitto, A., Glaser, S., Alpini G. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation.


Subject(s)
Cholangitis, Sclerosing/metabolism , Darkness , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Melatonin/metabolism , MicroRNAs/genetics , Angiogenesis Inducing Agents/metabolism , Animals , Cell Proliferation/physiology , Cholangitis, Sclerosing/genetics , Disease Models, Animal , Down-Regulation , Fibrosis/metabolism , Male , Mice, Transgenic
10.
Biometals ; 31(3): 369-379, 2018 06.
Article in English | MEDLINE | ID: mdl-29550924

ABSTRACT

Human lactoferrin is an iron-binding glycoprotein present at high concentrations in breast milk and colostrum. It is produced by many exocrine glands and widely distributed in a variety of body fluids. This protein has antimicrobial, immunomodulatory, antioxidant, and anticancer properties. Two important hLf receptors have been identified: LDL receptor related protein (LRP1), a low specificity receptor, and intelectin-1 (ITLN1), a high specificity receptor. No data are present on the role of hLf on the biliary epithelium. Our aims have been to evaluate the expression of Lf and its receptors in human and murine cholangiocytes and its effect on proliferation. Immunohistochemistry and immunofluorescence (IF) were conducted on human healthy and primary biliary cholangitis (PBC) liver samples as well as on liver samples obtained from normal and bile duct ligated (BDL) mice to evaluate the expression of Lf, LRP1 and ITLN1. Cell proliferation in vitro studies were performed on human cholangiocyte cell lines via 3-(4,5-dimetiltiazol-2-il)-2,5-diphenyltetrazolium assay as well as IF to evaluate proliferating cell nuclear antigen (PCNA) expression. Our results show that mouse and human cholangiocytes express Lf, LRP1 and ITLN1, at higher extent in cholangiocytes from BDL and PBC samples. Furthermore, the in vitro addition of bovine Lf (bLf) has a proliferative effect on human cholangiocyte cell line. The results support a proliferative role of hLf on the biliary epithelium; this pro-proliferative effect of hLf and bLf on cholangiocytes could be particularly relevant in human cholangiopathies such as PBC, characterized by cholangiocyte death and ductopenia.


Subject(s)
Cytokines/genetics , Lactoferrin/genetics , Lectins/genetics , Liver Cirrhosis, Biliary/genetics , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Animals , Apoptosis/drug effects , Cattle , Cell Proliferation/genetics , Epithelium/growth & development , Epithelium/metabolism , GPI-Linked Proteins/genetics , Glycoproteins/genetics , Humans , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/genetics , Lactoferrin/chemistry , Liver/drug effects , Liver/metabolism , Liver Cirrhosis, Biliary/pathology , Mice , Phosphorylation , Proliferating Cell Nuclear Antigen/genetics
11.
Molecules ; 23(12)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30544765

ABSTRACT

Due to renewed interest in the cultivation and production of Italian Cannabis sativa L., we proposed a multi-methodological approach to explore chemically and biologically both the essential oil and the aromatic water of this plant. We reported the chemical composition in terms of cannabinoid content, volatile component, phenolic and flavonoid pattern, and color characteristics. Then, we demonstrated the ethnopharmacological relevance of this plant cultivated in Italy as a source of antioxidant compounds toward a large panel of enzymes (pancreatic lipase, α-amylase, α-glucosidase, and cholinesterases) and selected clinically relevant, multidrug-sensible, and multidrug-resistant microbial strains (Staphylococcus aureus, Helicobacter pylori, Candida, and Malassezia spp.), evaluating the cytotoxic effects against normal and malignant cell lines. Preliminary in vivo cytotoxicity was also performed on Galleria mellonella larvae. The results corroborate the use of this natural product as a rich source of important biologically active molecules with particular emphasis on the role exerted by naringenin, one of the most important secondary metabolites.


Subject(s)
Cannabis/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Oils, Volatile/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Caco-2 Cells , Cell Line, Tumor , Ethnopharmacology , Humans , Italy , MCF-7 Cells , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Phenols/chemistry , Phenols/pharmacology , Plankton/drug effects
12.
Lab Invest ; 96(11): 1147-1155, 2016 11.
Article in English | MEDLINE | ID: mdl-27571215

ABSTRACT

The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium.


Subject(s)
Bile Ducts, Intrahepatic/physiology , Cysts/physiopathology , Epithelium/growth & development , Liver Diseases/physiopathology , Vasopressins/physiology , Animals , Cell Line , Cyclic AMP/metabolism , Cysts/metabolism , Humans , Keratin-19/metabolism , Liver Diseases/metabolism , Male , Mice, Inbred C57BL , Rats, Inbred F344 , Receptors, Vasopressin/metabolism
13.
Am J Pathol ; 185(4): 1061-72, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25794706

ABSTRACT

During cholestatic liver disease, there is dysregulation in the balance between biliary growth and loss in bile duct-ligated (BDL) rats modulated by neuroendocrine peptides via autocrine/paracrine pathways. Gonadotropin-releasing hormone (GnRH) is a trophic peptide hormone that modulates reproductive function and proliferation in many cell types. We evaluated the autocrine role of GnRH in the regulation of cholangiocyte proliferation. The expression of GnRH receptors was assessed in a normal mouse cholangiocyte cell line (NMC), sham, and BDL rats. The effect of GnRH administration was evaluated in normal rats and in NMC. GnRH-induced biliary proliferation was evaluated by changes in intrahepatic bile duct mass and the expression of proliferation and function markers. The expression and secretion of GnRH in NMC and isolated cholangiocytes was assessed. GnRH receptor subtypes GnRHR1 and GnRHR2 were expressed in cholangiocytes. Treatment with GnRH increased intrahepatic bile duct mass as well as proliferation and function markers in cholangiocytes. Transient knockdown and pharmacologic inhibition of GnRHR1 in NMC decreased proliferation. BDL cholangiocytes had increased expression of GnRH compared with normal rats, accompanied by increased GnRH secretion. In vivo and in vitro knockdown of GnRH decreased intrahepatic bile duct mass/cholangiocyte proliferation and fibrosis. GnRH secreted by cholangiocytes promotes biliary proliferation via an autocrine pathway. Disruption of GnRH/GnRHR signaling may be important for the management of cholestatic liver diseases.


Subject(s)
Autocrine Communication , Bile Ducts, Intrahepatic/cytology , Gonadotropin-Releasing Hormone/metabolism , Paracrine Communication , Animals , Bile Ducts, Intrahepatic/drug effects , Cell Line , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Fluorescent Antibody Technique , Gene Silencing/drug effects , Hypothalamus/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Liver Cirrhosis/pathology , Male , Mice , Morpholinos/administration & dosage , Morpholinos/pharmacology , Paracrine Communication/drug effects , Rats, Inbred F344 , Receptors, LHRH/metabolism
14.
Am J Physiol Gastrointest Liver Physiol ; 309(11): G865-73, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26451003

ABSTRACT

Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage.


Subject(s)
Angiogenic Proteins/metabolism , Bile Ducts, Intrahepatic/metabolism , Cholestasis/metabolism , Hepatic Artery/surgery , Reperfusion Injury/metabolism , Angiogenic Proteins/genetics , Animals , Apoptosis , Bile Ducts, Intrahepatic/drug effects , Bile Ducts, Intrahepatic/pathology , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Cholestasis/etiology , Cholestasis/genetics , Cholestasis/pathology , Cyclic AMP/metabolism , Disease Models, Animal , Hepatic Artery/physiopathology , Liver Circulation , Male , RNA, Messenger/metabolism , Rats, Inbred F344 , Reperfusion Injury/etiology , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Secretin/pharmacology , Signal Transduction , Time Factors , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
15.
Am J Physiol Gastrointest Liver Physiol ; 307(9): G894-904, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25214401

ABSTRACT

Biliary hyperplasia and liver fibrosis are common features in cholestatic liver disease. Melatonin is synthesized by the pineal gland as well as the liver. Melatonin inhibits biliary hyperplasia of bile duct-ligated (BDL) rats. Since melatonin synthesis (by the enzyme serotonin N-acetyltransferase, AANAT) from the pineal gland increases after dark exposure, we hypothesized that biliary hyperplasia and liver fibrosis are diminished by continuous darkness via increased melatonin synthesis from the pineal gland. Normal or BDL rats (immediately after surgery) were housed with light-dark cycles or complete dark for 1 wk before evaluation of 1) the expression of AANAT in the pineal gland and melatonin levels in pineal gland tissue supernatants and serum; 2) biliary proliferation and intrahepatic bile duct mass, liver histology, and serum chemistry; 3) secretin-stimulated ductal secretion (functional index of biliary growth); 4) collagen deposition, liver fibrosis markers in liver sections, total liver, and cholangiocytes; and 5) expression of clock genes in cholangiocytes. In BDL rats exposed to dark there was 1) enhanced AANAT expression/melatonin secretion in pineal gland and melatonin serum levels; 2) improved liver morphology, serum chemistry and decreased biliary proliferation and secretin-stimulated choleresis; and 4) decreased fibrosis and expression of fibrosis markers in liver sections, total liver and cholangiocytes and reduced biliary expression of the clock genes PER1, BMAL1, CLOCK, and Cry1. Thus prolonged dark exposure may be a beneficial noninvasive therapeutic approach for the management of biliary disorders.


Subject(s)
Bile Ducts/metabolism , Cholestasis/metabolism , Darkness , Liver/pathology , Melatonin/biosynthesis , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Arylalkylamine N-Acetyltransferase/genetics , Arylalkylamine N-Acetyltransferase/metabolism , Bile Acids and Salts/metabolism , Bile Ducts/pathology , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Cholestasis/therapy , Collagen/genetics , Collagen/metabolism , Cryptochromes/genetics , Cryptochromes/metabolism , Fibrosis/metabolism , Fibrosis/therapy , Hyperplasia/metabolism , Hyperplasia/therapy , Liver/metabolism , Male , Melatonin/blood , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Pineal Gland/metabolism , Rats , Rats, Inbred F344
16.
Hepatology ; 58(1): 251-63, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23389926

ABSTRACT

UNLABELLED: Large, but not small, cholangiocytes (1) secrete bicarbonate by interaction with secretin receptors (SRs) through activation of cystic fibrosis transmembrane regulator (CFTR), Cl(-) /HCO3 (-) (apex) anion exchanger 2 (Cl(-) /HCO3 (-) AE2), and adenylyl cyclase (AC)8 (proteins regulating large biliary functions) and (2) proliferate in response to bile duct ligation (BDL) by activation of cyclic adenosine monophosphate (cAMP) signaling. Small, mitotically dormant cholangiocytes are activated during damage of large cholangiocytes by activation of D-myo-inositol 1,4,5-trisphosphate/Ca(2+) /calmodulin-dependent protein kinase (CaMK) I. gamma-Aminobutyric acid (GABA) affects cell functions by modulation of Ca(2+) -dependent signaling and AC. We hypothesized that GABA induces the differentiation of small into large cholangiocytes by the activation of Ca(2+) /CaMK I-dependent AC8. In vivo, BDL mice were treated with GABA in the absence or presence of 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl ester (BAPTA/AM) or N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) before evaluating apoptosis and intrahepatic bile ductal mass (IBDM) of small and large cholangiocytes. In vitro, control- or CaMK I-silenced small cholangiocytes were treated with GABA for 3 days before evaluating apoptosis, proliferation, ultrastructural features, and the expression of CFTR, Cl(-) /HCO3 (-) AE2, AC8, and secretin-stimulated cAMP levels. In vivo administration of GABA induces the apoptosis of large, but not small, cholangiocytes and decreases large IBDM, but increased de novo small IBDM. GABA stimulation of small IBDM was blocked by BAPTA/AM and W7. Subsequent to GABA in vitro treatment, small cholangiocytes de novo proliferate and acquire ultrastructural and functional phenotypes of large cholangiocytes and respond to secretin. GABA-induced changes were prevented by BAPTA/AM, W7, and stable knockdown of the CaMK I gene. CONCLUSION: GABA damages large, but not small, cholangiocytes that differentiate into large cholangiocytes. The differentiation of small into large cholangiocytes may be important in the replenishment of the biliary epithelium during damage of large, senescent cholangiocytes.


Subject(s)
Adenylyl Cyclases/metabolism , Bile Ducts, Intrahepatic/cytology , Cell Differentiation/drug effects , gamma-Aminobutyric Acid/pharmacology , Animals , Apoptosis/drug effects , Bile Ducts, Intrahepatic/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , GABA Antagonists/pharmacology , Ligation , Male , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Sulfonamides/pharmacology
17.
Hepatology ; 57(3): 1130-41, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23080076

ABSTRACT

UNLABELLED: Secretin stimulates ductal secretion by interacting with secretin receptor (SR) activating cyclic adenosine 3',5'-monophosphate/cystic fibrosis transmembrane conductance regulator/chloride bicarbonate anion exchanger 2 (cAMP⇒CFTR⇒Cl(-) /HCO 3- AE2) signaling that is elevated by biliary hyperplasia. Cholangiocytes secrete several neuroendocrine factors regulating biliary functions by autocrine mechanisms. Melatonin inhibits biliary growth and secretin-stimulated choleresis in cholestatic bile-duct-ligated (BDL) rats by interaction with melatonin type 1 (MT1) receptor through down-regulation of cAMP-dependent signaling. No data exist regarding the role of melatonin synthesized locally by cholangiocytes in the autocrine regulation of biliary growth and function. In this study, we evaluated the (1) expression of arylalkylamine N-acetyltransferase (AANAT; the rate-limiting enzyme for melatonin synthesis from serotonin) in cholangiocytes and (2) effect of local modulation of biliary AANAT expression on the autocrine proliferative/secretory responses of cholangiocytes. In the liver, cholangiocytes (and, to a lesser extent, BDL hepatocytes) expressed AANAT. AANAT expression and melatonin secretion (1) increased in BDL, compared to normal rats and BDL rats treated with melatonin, and (2) decreased in normal and BDL rats treated with AANAT Vivo-Morpholino, compared to controls. The decrease in AANAT expression, and subsequent lower melatonin secretion by cholangiocytes, was associated with increased biliary proliferation and increased SR, CFTR, and Cl(-) /HCO 3- AE2 expression. Overexpression of AANAT in cholangiocyte cell lines decreased the basal proliferative rate and expression of SR, CFTR, and Cl(-) /HCO 3- AE2 and ablated secretin-stimulated biliary secretion in these cells. CONCLUSION: Local modulation of melatonin synthesis may be important for management of the balance between biliary proliferation/damage that is typical of cholangiopathies. (HEPATOLOGY 2013).


Subject(s)
Arylalkylamine N-Acetyltransferase/metabolism , Autocrine Communication/physiology , Bile Ducts, Intrahepatic/cytology , Bile Ducts, Intrahepatic/enzymology , Cholestasis/metabolism , Cholestasis/pathology , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Antiporters/genetics , Antiporters/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Arylalkylamine N-Acetyltransferase/genetics , Autocrine Communication/drug effects , Bile Ducts, Intrahepatic/drug effects , Cell Line, Transformed , Cell Proliferation , Gene Knockdown Techniques , Male , Melatonin/blood , Melatonin/pharmacology , Mice , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Inbred F344 , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , SLC4A Proteins
18.
Healthcare (Basel) ; 12(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38470694

ABSTRACT

Inguinoscrotal hernia is a common pediatric disease but a rare condition in the fetus. We present a case, from our institution, of fetal inguinoscrotal hernia with possible rapid development. In addition to our case, we present a literature update on fetal inguinoscrotal hernia in order to enhance the ability to recognize it from the other scrotal masses on ultrasound. Antenatal management, differential diagnosis and postnatal management are also discussed.

19.
Metabolites ; 14(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39057675

ABSTRACT

The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.

20.
Brain Commun ; 6(4): fcae210, 2024.
Article in English | MEDLINE | ID: mdl-39130512

ABSTRACT

Parkinson's disease is a progressive neurodegenerative disorder characterized by the deposition of misfolded alpha-synuclein in different regions of the central and peripheral nervous system. Motor impairment represents the signature clinical expression of Parkinson's disease. Nevertheless, non-motor symptoms are invariably present at different stages of the disease and constitute an important therapeutic challenge with a high impact for the patients' quality of life. Among non-motor symptoms, pain is frequently experienced by patients, being present in a range of 24-85% of Parkinson's disease population. Moreover, in more than 5% of patients, pain represents the first clinical manifestation, preceding by decades the exordium of motor symptoms. Pain implies a complex biopsychosocial experience with a downstream complex anatomical network involved in pain perception, modulation, and processing. Interestingly, all the anatomical areas involved in pain network can be affected by a-synuclein pathology, suggesting that pathophysiology of pain in Parkinson's disease encompasses a 'pain spectrum', involving different anatomical and neurochemical substrates. Here the various anatomical sites recruited in pain perception, modulation and processing are discussed, highlighting the consequences of their possible degeneration in course of Parkinson's disease. Starting from peripheral small fibres neuropathy and pathological alterations at the level of the posterior laminae of the spinal cord, we then describe the multifaceted role of noradrenaline and dopamine loss in driving dysregulated pain perception. Finally, we focus on the possible role of the intertwined circuits between amygdala, nucleus accumbens and habenula in determining the psycho-emotional, autonomic and cognitive experience of pain in Parkinson's disease. This narrative review provides the first anatomically driven comprehension of pain in Parkinson's disease, aiming at fostering new insights for personalized clinical diagnosis and therapeutic interventions.

SELECTION OF CITATIONS
SEARCH DETAIL