Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Neurosci ; 40(48): 9260-9271, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33097638

ABSTRACT

Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor-reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different behavioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated.SIGNIFICANCE STATEMENT Olfaction guides the behavior of animals. For successful survival, animals have to remember previously learned information and at the same time be able to acquire new memories. We show here that noradrenaline in the olfactory bulb, the first cortical relay of the olfactory information, is important for creating stable and specific olfactory memories. Memory stability, as expressed in perseverance, duration and specificity of the memory, is enhanced when noradrenergic inputs to the olfactory bulb are unaltered. We show that, computationally, our diverse behavioral results can be ascribed to noradrenaline-driven changes in neural dynamics. These results shed light on how very temporary changes in neuromodulation can have a variety of long-lasting effects on neural processing and behavior.


Subject(s)
Memory/physiology , Norepinephrine/physiology , Olfactory Bulb/physiology , Smell/physiology , Animals , Computer Simulation , Male , Memory, Long-Term/physiology , Mice , Mice, Inbred C57BL , Neurons/physiology , Norepinephrine/metabolism , Odorants , Olfactory Bulb/metabolism , Olfactory Pathways/physiology , Reversal Learning/physiology , Reward , Synapses/physiology , Synaptic Transmission
2.
Cell Tissue Res ; 383(1): 485-493, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33515292

ABSTRACT

Whether an odorant is perceived as pleasant or unpleasant (hedonic value) governs a range of crucial behaviors: foraging, escaping danger, and social interaction. Despite its importance in olfactory perception, little is known regarding how odor hedonics is represented and encoded in the brain. Here, we review recent findings describing how odorant hedonic value is represented in the first olfaction processing center, the olfactory bulb. We discuss how olfactory bulb circuits might contribute to the coding of innate and learned odorant hedonics in addition to the odorant's physicochemical properties.


Subject(s)
Odorants , Olfactory Bulb/physiology , Animals , Vertebrates
3.
Chem Senses ; 462021 01 01.
Article in English | MEDLINE | ID: mdl-34618883

ABSTRACT

Links between olfactory sensory function and effect have been well established. A robust literature exists in both humans and animals showing that disrupting olfaction sensory function can elicit disordered mood state, including serve as a model of depression. Despite this, considerably less is known regarding the directionality and neural basis of this relationship, e.g. whether disruptions in sensory function precede and contribute to altered mood or if altered mood state precipitates changes in olfactory perception. Further, the neural basis of altered olfactory function in depression remains unclear. In conjunction with clinical studies, animal models represent a valuable tool to understand the relationship between altered mood and olfactory sensory function. Here, we review the relevant literature assessing olfactory performance in depression in humans and in rodent models of depressive-like behavioral states. Rodents allow for detailed characterization of alterations in olfactory perception, manipulation of experiential events that elicit depressive-like phenotypes, and allow for interrogation of potential predictive markers of disease and the cellular basis of olfactory impairments associated with depressive-like phenotypes. We synthesize these findings to identify paths forward to investigate and understand the complex interplay between depression and olfactory sensory function.


Subject(s)
Olfaction Disorders , Olfactory Perception , Animals , Depression , Smell
4.
Cereb Cortex ; 30(2): 534-549, 2020 03 21.
Article in English | MEDLINE | ID: mdl-31216001

ABSTRACT

Olfactory perceptual learning is defined as an improvement in the discrimination of perceptually close odorants after passive exposure to these odorants. In mice, simple olfactory perceptual learning involving the discrimination of two odorants depends on an increased number of adult-born neurons in the olfactory bulb, which refines the bulbar output. However, the olfactory environment is complex, raising the question of the adjustment of the bulbar network to multiple discrimination challenges. Perceptual learning of 1 to 6 pairs of similar odorants led to discrimination of all learned odor pairs. Increasing complexity did not increase adult-born neuron survival but enhanced the number of adult-born neurons responding to learned odorants and their spine density. Moreover, only complex learning induced morphological changes in neurons of the granule cell layer born during the first day of life (P0). Selective optogenetic inactivation of either population confirmed functional involvement of adult-born neurons regardless of the enrichment complexity, while preexisting neurons were required for complex discrimination only.


Subject(s)
Discrimination Learning/physiology , Neurogenesis , Neurons/physiology , Olfactory Perception/physiology , Animals , Male , Mice, Inbred C57BL , Neurons/cytology , Odorants , Olfactory Bulb/cytology , Optogenetics
5.
Learn Mem ; 22(3): 192-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25691519

ABSTRACT

Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed α1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that associative learning, as opposed to perceptual learning, was not affected by labetalol infusions in the olfactory bulb. Accordingly, this treatment during associative learning did not affect the survival of bulbar adult-born neurons. Altogether, our results suggest that the noradrenergic system plays different parts in specific olfactory learning tasks and their neurogenic correlates.


Subject(s)
Association Learning/physiology , Norepinephrine/physiology , Olfactory Bulb/physiology , Olfactory Perception/physiology , Animals , Association Learning/drug effects , Labetalol/pharmacology , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/drug effects , Olfactory Perception/drug effects
6.
Front Neural Circuits ; 18: 1467203, 2024.
Article in English | MEDLINE | ID: mdl-39175668

ABSTRACT

The olfactory bulb is a unique site of continuous neurogenesis, primarily generating inhibitory interneurons, a process that begins at birth and extends through infancy and adulthood. This review examines the characteristics of olfactory bulb neurogenesis, focusing on granule cells, the most numerous interneurons, and how their age and maturation affect their function. Adult-born granule cells, while immature, contribute to the experience-dependent plasticity of the olfactory circuit by enabling structural and functional synaptic changes. In contrast, granule cells born early in life form the foundational elements of the olfactory bulb circuit, potentially facilitating innate olfactory information processing. The implications of these neonatal cells on early life olfactory memory and their impact on adult perception, particularly in response to aversive events and susceptibility to emotional disorders, warrant further investigation.


Subject(s)
Neurogenesis , Olfactory Bulb , Neurogenesis/physiology , Animals , Humans , Olfactory Bulb/physiology , Mental Health , Interneurons/physiology , Neuronal Plasticity/physiology
7.
Neurobiol Aging ; 136: 133-156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364691

ABSTRACT

Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.


Subject(s)
Brain , Smell , Mice , Animals , Smell/physiology , Cognition , Norepinephrine/physiology , Locus Coeruleus/physiology , Olfactory Bulb/physiology
8.
J Vis Exp ; (203)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38314795

ABSTRACT

It is widely accepted that olfactory stimulation elicits motor behaviors, such as approaching pleasant odorants and avoiding unpleasant ones, in animals and humans. Recently, studies using electroencephalography and transcranial magnetic stimulation (TMS) have demonstrated a strong link between processing in the olfactory system and activity in the motor cortex in humans. To better understand the interactions between the olfactory and the motor systems and to overcome some of the previous methodological limitations, we developed a new method combining an olfactometer that synchronizes the random order presentation of odorants with different hedonic values and the TMS (single- and dual-coil) triggering with nasal breathing phases. This method allows probing the modulations of corticospinal excitability and effective ipsilateral connectivity between the dorsolateral prefrontal cortex and the primary motor cortex that could occur during pleasant and unpleasant odor perception. The application of this method will allow for objectively discriminating the pleasantness value of an odorant in a given participant, indicating the biological impact of the odorant on brain effective connectivity and excitability. In addition, this could pave the way for clinical investigations in patients with neurological or neuropsychiatric disorders who may exhibit odor hedonic alterations and maladaptive approach-avoidance behaviors.


Subject(s)
Brain , Odorants , Animals , Humans , Brain/physiology , Smell/physiology , Emotions/physiology , Transcranial Magnetic Stimulation
9.
Neurobiol Aging ; 137: 8-18, 2024 May.
Article in English | MEDLINE | ID: mdl-38394723

ABSTRACT

Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.


Subject(s)
Odorants , Olfactory Perception , Humans , Mice , Animals , Aged , Smell/physiology , Olfactory Perception/physiology , Quality of Life , Olfactory Bulb/physiology
10.
J Neurosci ; 32(11): 3748-58, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423095

ABSTRACT

We have previously shown that an experience-driven improvement in olfactory discrimination (perceptual learning) requires the addition of newborn neurons in the olfactory bulb (OB). Despite this advance, the mechanisms which govern the selective survival of newborn OB neurons following learning remain largely unknown. We propose that activity of the noradrenergic system is a critical mediator providing a top-down signal to control the selective survival of newly born cells and support perceptual learning. In adult mice, we used pharmacological means to manipulate the noradrenergic system and neurogenesis and to assess their individual and additive effects on behavioral performance on a perceptual learning task. We then looked at the effects of these manipulations on regional survival of adult-born cells in the OB. Finally, using confocal imaging and electrophysiology, we investigated potential mechanisms by which noradrenaline could directly influence the survival of adult-born cells. Consistent with our hypotheses, direct manipulation of noradrenergic transmission significantly effect on adult-born cell survival and perceptual learning. Specifically, learning required both the presence of adult-born cell and noradrenaline. Finally, we provide a mechanistic link between these effects by showing that adult-born neurons receive noradrenergic projections and are responsive to noradrenaline. Based upon these data we argue that noradrenergic transmission is a key mechanism selecting adult-born neurons during learning and demonstrate that top-down neuromodulation acts on adult-born neuron survival to modulate learning performance.


Subject(s)
Adrenergic Neurons/physiology , Learning/physiology , Neurogenesis/physiology , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Olfactory Perception/physiology , Age Factors , Animals , Cell Survival/physiology , Male , Mice , Mice, Inbred C57BL , Odorants , Random Allocation
11.
Stem Cells ; 30(4): 719-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22290807

ABSTRACT

Neural stem cells (NSC) persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ stem and progenitor cell proliferation are not fully elucidated. Vitamin K-dependent proteins (VKDPs) are mainly secreted factors that were initially discovered as major regulators of blood coagulation. Warfarin ((S(-)-3-acetonylbenzyl)-4-hydroxycoumarin)), a widespread anticoagulant, is a vitamin K antagonist that inhibits the production of functional VKDP. We demonstrate that the suppression of functional VKDPs production, in vitro, by exposure of SVZ cell cultures to warfarin or, in vivo, by its intracerebroventricular injection to mice, leads to a substantial increase in SVZ cell proliferation. We identify the anticoagulant factors, protein S and its structural homolog Gas6, as the two only VKDPs produced by SVZ cells and describe the expression and activation pattern of their Tyro3, Axl, and Mer tyrosine kinase receptors. Both in vitro and in vivo loss of function studies consisting in either Gas6 gene invalidation or in endogenous protein S neutralization, provided evidence for an important novel regulatory role of these two VKDPs in the SVZ neurogenic niche. Specifically, we show that while a loss of Gas6 leads to a reduction in the numbers of stem-like cells and in olfactory bulb neurogenesis, endogenous protein S inhibits SVZ cell proliferation. Our study opens up new perspectives for investigating further the role of vitamin K, VKDPs, and anticoagulants in NSC biology in health and disease.


Subject(s)
Cerebral Ventricles/cytology , Stem Cell Niche , Vitamin K/metabolism , Animals , Apoptosis/drug effects , Carbon-Carbon Ligases/metabolism , Cell Proliferation/drug effects , Cerebral Ventricles/enzymology , Gene Knockout Techniques , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mixed Function Oxygenases/metabolism , Protein S/metabolism , Proto-Oncogene Proteins/metabolism , Rats , Rats, Wistar , Receptor Protein-Tyrosine Kinases/metabolism , Stem Cell Niche/drug effects , Vitamin K/antagonists & inhibitors , Vitamin K Epoxide Reductases , Warfarin/administration & dosage , Warfarin/pharmacology , Axl Receptor Tyrosine Kinase
12.
Front Neurosci ; 17: 1224941, 2023.
Article in English | MEDLINE | ID: mdl-37600017

ABSTRACT

Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.

13.
J Neurosci ; 31(35): 12455-60, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21880907

ABSTRACT

New neurons are continuously generated in the adult mammalian olfactory bulb. The role of these newborn neurons in olfactory learning has been debated. Blocking the addition of neurons has been reported either to result in memory alteration or to have no effect at all (Imayoshi et al., 2008; Breton-Provencher et al., 2009; Lazarini et al., 2009; Sultan et al., 2010). These discrepancies may have arisen from differences in the behavioral paradigms used: operant procedures indicated that neurogenesis blockade had substantial effects on long-term memory (Lazarini et al., 2009; Sultan et al., 2010) whereas other methods had little effect (Imayoshi et al., 2008; Breton-Provencher et al., 2009). Surprisingly, while operant learning is known to modulate the survival of new neurons, the effect of non-operant learning on newborn cells is unknown. Here we use mice to show that compared with operant learning, non-operant learning does not affect cell survival, perhaps explaining the current controversy. In addition, we provide evidence that distinct neural substrates at least partly underlie these two forms of learning. We conclude that the involvement of newborn neurons in learning is subtly dependent on the nature of the behavioral task.


Subject(s)
Association Learning/physiology , Conditioning, Psychological/physiology , Neurogenesis/physiology , Neurons/physiology , Olfactory Bulb/cytology , Smell/physiology , Animals , Brain Mapping , Bromodeoxyuridine/metabolism , Cell Count/methods , Cell Survival , Early Growth Response Protein 1/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphopyruvate Hydratase/metabolism
14.
J Neurosci ; 31(42): 14893-8, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-22016522

ABSTRACT

A role for newborn neurons in olfactory memory has been proposed based on learning-dependent modulation of olfactory bulb neurogenesis in adults. We hypothesized that if newborn neurons support memory, then they should be suppressed by memory erasure. Using an ecological approach in mice, we showed that behaviorally breaking a previously learned odor-reward association prematurely suppressed newborn neurons selected to survive during initial learning. Furthermore, intrabulbar infusions of the caspase pan-inhibitor ZVAD (benzyloxycarbonyl-Val-Ala-Asp) during the behavioral odor-reward extinction prevented newborn neurons death and erasure of the odor-reward association. Newborn neurons thus contribute to the bulbar network plasticity underlying long-term memory.


Subject(s)
Conditioning, Psychological/physiology , Neurogenesis/physiology , Neurons/physiology , Olfactory Bulb/cytology , Smell/physiology , Analysis of Variance , Animals , Behavior, Animal , Bromodeoxyuridine/metabolism , Cell Count , Cues , Early Growth Response Protein 1/metabolism , Enzyme Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurogenesis/radiation effects , Odorants , Olfactory Bulb/drug effects , Oligopeptides/pharmacology , Phosphopyruvate Hydratase/metabolism , Photic Stimulation , Proto-Oncogene Proteins c-fos/metabolism , Reaction Time/drug effects , Reaction Time/physiology , Retention, Psychology/drug effects , Retention, Psychology/physiology , Reward , Smell/radiation effects , Time Factors
15.
Proc Natl Acad Sci U S A ; 106(42): 17980-5, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19815505

ABSTRACT

Perceptual learning is required for olfactory function to adapt appropriately to changing odor environments. We here show that newborn neurons in the olfactory bulb are not only involved in, but necessary for, olfactory perceptual learning. First, the discrimination of perceptually similar odorants improves in mice after repeated exposure to the odorants. Second, this improved discrimination is accompanied by an elevated survival rate of newborn inhibitory neurons, preferentially involved in processing of the learned odor, within the olfactory bulb. Finally, blocking neurogenesis before and during the odorant exposure period prevents this learned improvement in discrimination. Olfactory perceptual learning is thus mediated by the reinforcement of functional inhibition in the olfactory bulb by adult neurogenesis.


Subject(s)
Learning/physiology , Neurogenesis/physiology , Olfactory Perception/physiology , Animals , Cell Survival , Discrimination Learning/physiology , Electrophysiological Phenomena , Glutamate Decarboxylase/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Neurons/cytology , Neurons/physiology , Odorants , Olfactory Bulb/cytology , Olfactory Bulb/physiology
16.
J Neurosci Methods ; 366: 109422, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34826503

ABSTRACT

BACKGROUND: When you smell an odorant, your first reaction will certainly be either I like it or I dislike it. This primary reaction is a reflection of what is called the "hedonic value" of the odor. Very often, this hedonic value dominates the olfactory percept, more than olfactory identification or intensity. This component of olfactory perception is of primary importance for guiding behavior: avoiding danger (the smell of smoke, gas, etc.), consuming food, or seduction. Olfactory hedonics can be assessed using a large number of methods in humans, including psychophysical measures, autonomic responses, measurement of facial expressions or peripheral nervous activity. All of these techniques have their limitations: subjectivity, invasiveness, need for expertise, etc. A NEW METHOD: The olfactory system is closely linked to the reward system, the role of which is to mediate motivated behavior. In this context, we propose that the capacity odorants have of recruiting the reward system and thus inducing motivated behavior can be used to identify new behavioral parameters to assess odor hedonic value in humans. RESULTS: We recorded freely moving human participants exploring odors emanating from flasks, and showed that five parameters linked to motivated behavior were closely linked to odor hedonics: speed of approach to the nose and withdrawal of the flask containing the odorant, distance between flask and nose, number of samplings, and withdrawal distance (maximal distance between nose and flask after odor sampling). CONCLUSIONS: We highlighted new non-verbal and non-invasive parameters to evaluate olfactory hedonics in humans based on the assessment of odor-motivated behavior.


Subject(s)
Odorants , Olfactory Perception , Autonomic Nervous System , Humans , Smell/physiology
17.
Brain Sci ; 12(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35203890

ABSTRACT

The search for a biological marker predicting the future failure or success of electroconvulsive therapy (ECT) remains highly challenging for patients with treatment-resistant depression. Evidence suggests that Brain-Derived Neurotrophic Factor (BDNF), a protein known to be involved in brain plasticity mechanisms, can play a key role in both the clinical efficacy of ECT and the pathophysiology of depressive disorders. We hypothesized that mature BDNF (mBDNF), an isoform of BDNF involved in the neural plasticity and survival of neural networks, might be a good candidate for predicting the efficacy of ECT. Total BDNF (tBDNF) and mBDNF levels were measured in 23 patients with severe treatment-resistant depression before (baseline) they received a course of ECT. More precisely, tBDNF and mBDNF measured before ECT were compared between patients who achieved the criteria of remission after the ECT course (remitters, n = 7) and those who did not (non-remitters, n = 16). We found that at baseline, future remitters displayed significantly higher mBDNF levels than future non-remitters (p = 0.04). No differences were observed regarding tBDNF levels at baseline. The multiple logistic regression model controlled for age and sex revealed that having a higher baseline mBDNF level was significantly associated with future remission after ECT sessions (odd ratio = 1.38; 95% confidence interval = 1.07-2.02, p = 0.04). Despite the limitations of the study, current findings provide additional elements regarding the major role of BDNF and especially the mBDNF isoform in the clinical response to ECT in major depression.

18.
Neurobiol Aging ; 114: 73-83, 2022 06.
Article in English | MEDLINE | ID: mdl-35413485

ABSTRACT

Normal brain aging is associated with deficits in cognitive and sensory processes, due to subtle impairment of synaptic contacts and plasticity. Impairment may be discrete in basal conditions but is revealed when cerebral plasticity is involved, such as in learning contexts. We used olfactory perceptual learning, a non-associative form of learning in which discrimination between perceptually similar odorants is improved following exposure to these odorants, to better understand the cellular bases of olfactory aging in mice. We first evaluated learning ability and memory retention in 2-, 6-, 12-, and 18-month-old mice, and identified 12 months as a pivotal age when memory retention subtly declines before learning becomes totally impaired at later ages. We then showed that learning-induced structural plasticity of adult-born granule cells is specific to cells responding to the learned odorants in the olfactory bulb of young adult mice and loses its specificity in 12-month-old mice, in parallel to memory impairment. Taken together, our data refine our understanding of aging-related impairment of plasticity mechanisms in the olfactory bulb and consequent induction of olfactory learning and memory deficits.


Subject(s)
Neurogenesis , Olfactory Bulb , Aging/physiology , Animals , Memory Disorders , Mice , Neurogenesis/physiology , Neuronal Plasticity/physiology , Odorants , Olfactory Bulb/physiology , Smell/physiology
19.
J Neurosci ; 30(27): 9017-26, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20610736

ABSTRACT

Odor identity is coded in spatiotemporal patterns of neural activity in the olfactory bulb. Here we asked whether meaningful olfactory information could also be read from the global olfactory neural population response. We applied standard statistical methods of dimensionality-reduction to neural activity from 12 previously published studies using seven different species. Four studies reported olfactory receptor activity, seven reported glomerulus activity, and one reported the activity of projection-neurons. We found two linear axes of neural population activity that accounted for more than half of the variance in neural response across species. The first axis was correlated with the total sum of odor-induced neural activity, and reflected the behavior of approach or withdrawal in animals, and odorant pleasantness in humans. The second and orthogonal axis reflected odorant toxicity across species. We conclude that in parallel with spatiotemporal pattern coding, the olfactory system can use simple global computations to read vital olfactory information from the neural population response.


Subject(s)
Models, Neurological , Neurons/physiology , Olfactory Bulb/cytology , Olfactory Perception/physiology , Action Potentials , Adult , Computer Simulation , Databases, Factual/statistics & numerical data , Female , Humans , Male , Odorants , Predictive Value of Tests , Smell/physiology , Statistics as Topic , Young Adult
20.
Brain Sci ; 11(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069556

ABSTRACT

Although transcranial direct current stimulation (tDCS) shows promise as a treatment for auditory verbal hallucinations in patients with schizophrenia, mechanisms through which tDCS may induce beneficial effects remain unclear. Evidence points to the involvement of neuronal plasticity mechanisms that are underpinned, amongst others, by brain-derived neurotrophic factor (BDNF) in its two main forms: pro and mature peptides. Here, we aimed to investigate whether tDCS modulates neural plasticity by measuring the acute effects of tDCS on peripheral mature BDNF levels in patients with schizophrenia. Blood samples were collected in 24 patients with schizophrenia before and after they received a single session of either active (20 min, 2 mA, n = 13) or sham (n = 11) frontotemporal tDCS with the anode over the left prefrontal cortex and the cathode over the left temporoparietal junction. We compared the tDCS-induced changes in serum mature BDNF (mBDNF) levels adjusted for baseline values between the two groups. The results showed that active tDCS was associated with a significantly larger decrease in mBDNF levels (mean -20% ± standard deviation 14) than sham tDCS (-8% ± 21) (F = 5.387; p = 0.030; η2 = 0.205). Thus, mature BDNF may be involved in the beneficial effects of frontotemporal tDCS observed in patients with schizophrenia.

SELECTION OF CITATIONS
SEARCH DETAIL