Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35063084

ABSTRACT

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Subject(s)
Mitochondria/metabolism , Nerve Degeneration/metabolism , Protein Interaction Maps , Synapses/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Amino Acids/metabolism , Biotinylation , Brain/metabolism , Brain/pathology , Cell Nucleus/metabolism , Disease Progression , Energy Metabolism , Frontotemporal Dementia/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Nerve Degeneration/pathology , Neurons/metabolism , Protein Binding , Protein Domains , Proteomics , Severity of Illness Index , Subcellular Fractions/metabolism , Tauopathies/genetics , tau Proteins/chemistry
2.
EMBO Rep ; 25(5): 2479-2510, 2024 May.
Article in English | MEDLINE | ID: mdl-38684907

ABSTRACT

The most prevalent genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia is a (GGGGCC)n nucleotide repeat expansion (NRE) occurring in the first intron of the C9orf72 gene (C9). Brain glucose hypometabolism is consistently observed in C9-NRE carriers, even at pre-symptomatic stages, but its role in disease pathogenesis is unknown. Here, we show alterations in glucose metabolic pathways and ATP levels in the brains of asymptomatic C9-BAC mice. We find that, through activation of the GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in C9-BAC mice. We also show that one of the arginine-rich DPRs (PR) could directly contribute to glucose metabolism and metabolic stress by inhibiting glucose uptake in neurons. Our findings provide a potential mechanistic link between energy imbalances and C9-ALS/FTD pathogenesis and suggest a feedforward loop model with potential opportunities for therapeutic intervention.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Glucose , Phenotype , ran GTP-Binding Protein , Animals , Mice , Adenosine Triphosphate/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Brain/metabolism , Brain/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Disease Models, Animal , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Glucose/metabolism , Mice, Transgenic , Neurons/metabolism , Protein Biosynthesis , ran GTP-Binding Protein/metabolism
3.
EMBO Rep ; 24(1): e54689, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36408842

ABSTRACT

Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.


Subject(s)
Saccharomyces cerevisiae Proteins , Sphingolipids , Animals , Humans , Sphingolipids/metabolism , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Membrane Proteins/metabolism , Homeostasis , Saccharomyces cerevisiae/metabolism , Mammals/metabolism
4.
Hum Mol Genet ; 31(9): 1500-1518, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34791217

ABSTRACT

Mutations in the mitochondrial protein CHCHD2 cause autosomal dominant Parkinson's disease characterized by the preferential loss of substantia nigra dopamine (DA) neurons. Therefore, understanding the function of CHCHD2 in neurons may provide vital insights into how mitochondrial dysfunction contributes to neurodegeneration in PD. To investigate the normal requirement and function of CHCHD2 in neurons, we first examined CHCHD2 levels and showed that DA neurons have higher CHCHD2 levels than other neuron types, both in vivo and in co-culture. We then generated mice with either a targeted deletion of CHCHD2 in DA neurons or a deletion in the brain or total body. All three models were viable, and loss of CHCHD2 in the brain did not cause degeneration of DA neurons. Mice lacking CHCHD2 in DA neurons did display sex-specific changes to locomotor activity, but we did not observe differences in assays of muscle strength, exercise endurance or motor coordination. Furthermore, mitochondria derived from mice lacking CHCHD2 did not display abnormalities in OXPHOS function. Lastly, resilience to CHCHD2 deletion could not be explained by functional complementation by its paralog CHCHD10, as deletion of both CHCHD10 and CHCHD2 did not cause degeneration of DA neurons in the midbrain. These findings support the hypothesis that pathogenic CHCHD2 mutations cause PD through a toxic gain-of-function, rather than loss-of-function mechanism.


Subject(s)
Dopaminergic Neurons , Mitochondrial Proteins , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dopaminergic Neurons/metabolism , Female , Male , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Substantia Nigra/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Hum Mol Genet ; 31(20): 3458-3477, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35652455

ABSTRACT

Metabolic alterations shared between the nervous system and skin fibroblasts have emerged in amyotrophic lateral sclerosis (ALS). Recently, we found that a subgroup of sporadic ALS (sALS) fibroblasts (sALS1) is characterized by metabolic profiles distinct from other sALS cases (sALS2) and controls, suggesting that metabolic therapies could be effective in sALS. The metabolic modulators nicotinamide riboside and pterostilbene (EH301) are under clinical development for the treatment of ALS. Here, we studied the transcriptome and metabolome of sALS cells to understand the molecular bases of sALS metabotypes and the impact of EH301. Metabolomics and transcriptomics were investigated at baseline and after EH301 treatment. Moreover, weighted gene coexpression network analysis (WGCNA) was used to investigate the association of the metabolic and clinical features. We found that the sALS1 transcriptome is distinct from sALS2 and that EH301 modifies gene expression differently in sALS1, sALS2 and the controls. Furthermore, EH301 had strong protective effects against metabolic stress, an effect linked to the antiinflammatory and antioxidant pathways. WGCNA revealed that the ALS functional rating scale and metabotypes are associated with gene modules enriched for the cell cycle, immunity, autophagy and metabolic genes, which are modified by EH301. The meta-analysis of publicly available transcriptomic data from induced motor neurons by Answer ALS confirmed the functional associations of genes correlated with disease traits. A subset of genes differentially expressed in sALS fibroblasts was used in a machine learning model to predict disease progression. In conclusion, multiomic analyses highlighted the differential metabolic and transcriptomic profiles in patient-derived fibroblast sALS, which translate into differential responses to the investigational drug EH301.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/metabolism , Antioxidants/metabolism , Drugs, Investigational/metabolism , Drugs, Investigational/therapeutic use , Fibroblasts/metabolism , Humans , Transcriptome/genetics
6.
Nature ; 562(7727): 423-428, 2018 10.
Article in English | MEDLINE | ID: mdl-30305738

ABSTRACT

Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function1-4. However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer-an aggressive malignancy that is refractory to standard treatments and current immunotherapies5-8-induces endoplasmic reticulum stress and activates the IRE1α-XBP1 arm of the unfolded protein response9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α-XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α-XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α-XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.


Subject(s)
Endoribonucleases/metabolism , Mitochondria/metabolism , Ovarian Neoplasms/immunology , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , X-Box Binding Protein 1/metabolism , Amino Acid Transport Systems, Basic , Animals , Ascites/metabolism , Cell Respiration , Disease Progression , Endoplasmic Reticulum Stress , Female , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Glutamine/metabolism , Glycosylation , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Ovarian Neoplasms/pathology , Signal Transduction , Survival Rate , T-Lymphocytes/metabolism , Tumor Escape/immunology , Unfolded Protein Response , X-Box Binding Protein 1/biosynthesis , X-Box Binding Protein 1/deficiency
7.
Phys Rev Lett ; 131(9): 097101, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37721846

ABSTRACT

By controlling the variance of the radiation pressure exerted on an optically trapped microsphere in real time, we engineer temperature protocols that shortcut thermal relaxation when transferring the microsphere from one thermal equilibrium state to another. We identify the entropic footprint of such accelerated transfers and derive optimal temperature protocols that either minimize the production of entropy for a given transfer duration or accelerate the transfer for a given entropic cost as much as possible. Optimizing the trade-off yields time-entropy bounds that put speed limits on thermalization schemes. We further show how optimization expands the possibilities for accelerating Brownian thermalization down to its fundamental limits. Our approach paves the way for the design of optimized, finite-time thermodynamics for Brownian engines. It also offers a platform for investigating fundamental connections between information geometry and finite-time processes.

8.
EMBO Rep ; 21(4): e48978, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32090465

ABSTRACT

Defects in the proteasome can result in pathological proteinopathies. However, the pathogenic role of sex- and tissue-specific sensitivity to proteotoxic stress remains elusive. Here, we map the proteasome activity across nine tissues, in male and female mice, and demonstrate strong sexual dimorphism in proteasome activity, where females have significantly higher activity in several tissues. Further, we report drastic differences in proteasome activity among tissues, independently of proteasome concentration, which are exacerbated under stress conditions. Sexual dimorphism in proteasome activity is confirmed in a SOD1 ALS mouse model, in which the spinal cord, a tissue with comparatively low proteasome activity, is severely affected. Our results offer mechanistic insight into tissue-specific sensitivities to proteostasis stress and into sex differences in the progression of neurodegenerative proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis , Sex Characteristics , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Proteasome Endopeptidase Complex/genetics , Protein Aggregates , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics
9.
Int Rev Psychiatry ; 34(7-8): 736-752, 2022.
Article in English | MEDLINE | ID: mdl-36786113

ABSTRACT

Second messenger systems, like the cyclic nucleotide, glycogen synthase kinase-3ß, phosphoinositide, and arachidonic acid cascades, are involved in bipolar disorder (BD). We investigated their role on the development of novel therapeutic drugs using second messenger mechanisms. PubMed search and narrative review. We used all relevant keywords for each second messenger cascade combining it with BD and related terms and combined all with novel/innovative treatments/drugs. Our search produced 31 papers most were reviews, and focussed on the PI3K/AKT-GSK-3ß/Nrf2-NF-ĸB pathways. Only two human randomized clinical trials were identified, of ebselen, an antioxidant, and celecoxib, a cyclooxygenase-2 inhibitor, both with poor unsatisfactory results. Despite the fact that all second messenger systems are involved in the pathophysiology of BD, there are few experiments with novel drugs using these mechanisms. These mechanisms are a neglected and potentially major opportunity to transform the treatment of bipolar illness.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/therapeutic use , Second Messenger Systems
10.
J Neurosci ; 40(16): 3142-3151, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32152200

ABSTRACT

Prohibitin (PHB) is a critical protein involved in many cellular activities. In brain, PHB resides in mitochondria, where it forms a large protein complex with PHB2 in the inner TFmembrane, which serves as a scaffolding platform for proteins involved in mitochondrial structural and functional integrity. PHB overexpression at moderate levels provides neuroprotection in experimental brain injury models. In addition, PHB expression is involved in ischemic preconditioning, as its expression is enhanced in preconditioning paradigms. However, the mechanisms of PHB functional regulation are still unknown. Observations that nitric oxide (NO) plays a key role in ischemia preconditioning compelled us to postulate that the neuroprotective effect of PHB could be regulated by NO. Here, we test this hypothesis in a neuronal model of ischemia-reperfusion injury and show that NO and PHB are mutually required for neuronal resilience against oxygen and glucose deprivation stress. Further, we demonstrate that NO post-translationally modifies PHB through protein S-nitrosylation and regulates PHB neuroprotective function, in a nitric oxide synthase-dependent manner. These results uncover the mechanisms of a previously unrecognized form of molecular regulation of PHB that underlies its neuroprotective function.SIGNIFICANCE STATEMENT Prohibitin (PHB) is a critical mitochondrial protein that exerts a potent neuroprotective effect when mildly upregulated in mice. However, how the neuroprotective function of PHB is regulated is still unknown. Here, we demonstrate a novel regulatory mechanism for PHB that involves nitric oxide (NO) and shows that PHB and NO interact directly, resulting in protein S-nitrosylation on residue Cys69 of PHB. We further show that nitrosylation of PHB may be essential for its ability to preserve neuronal viability under hypoxic stress. Thus, our study reveals a previously unknown mechanism of functional regulation of PHB that has potential therapeutic implications for neurologic disorders.


Subject(s)
Neurons/metabolism , Neuroprotection/physiology , Nitric Oxide/metabolism , Reperfusion Injury/metabolism , Repressor Proteins/metabolism , Animals , Cell Death/physiology , Cells, Cultured , Cyclic GMP/metabolism , Enzyme Inhibitors/pharmacology , Mice , NG-Nitroarginine Methyl Ester/pharmacology , Neurons/drug effects , Neuroprotection/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Prohibitins , Signal Transduction/drug effects , Signal Transduction/physiology
11.
Neurobiol Dis ; 144: 105025, 2020 10.
Article in English | MEDLINE | ID: mdl-32745521

ABSTRACT

Amyotrophic lateral sclerosis is a disease characterized by progressive paralysis and death. Most ALS-cases are sporadic (sALS) and patient heterogeneity poses challenges for effective therapies. Applying metabolite profiling on 77-sALS patient-derived-fibroblasts and 43-controls, we found ~25% of sALS cases (termed sALS-1) are characterized by transsulfuration pathway upregulation, where methionine-derived-homocysteine is channeled into cysteine for glutathione synthesis. sALS-1 fibroblasts selectively exhibited a growth defect under oxidative conditions, fully-rescued by N-acetylcysteine (NAC). [U13C]-glucose tracing showed transsulfuration pathway activation with accelerated glucose flux into the Krebs cycle. We established a four-metabolite support vector machine model predicting sALS-1 metabotype with 97.5% accuracy. Both sALS-1 metabotype and growth phenotype were validated in an independent cohort of sALS cases. Importantly, plasma metabolite profiling identified a system-wide cysteine metabolism perturbation as a hallmark of sALS-1. Findings reveal that sALS patients can be stratified into distinct metabotypes with differential sensitivity to metabolic stress, providing novel insights for personalized therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cysteine/metabolism , Fibroblasts/metabolism , Glucose/metabolism , Glutathione/metabolism , Metabolome , Aged , Case-Control Studies , Cells, Cultured , Female , Humans , Male , Metabolic Networks and Pathways , Metabolomics , Middle Aged , Serine/metabolism , Skin/cytology
12.
Annu Rev Phys Chem ; 70: 99-121, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31174457

ABSTRACT

Organic devices are attracting considerable attention as prostheses for the recovery of retinal light sensitivity lost to retinal degenerative disease. The biotic/abiotic interface created when light-sensitive polymers and living tissues are placed in contact allows excitation of a response in blind laboratory rats exposed to visual stimuli. Although polymer retinal prostheses have proved to be efficient, their working mechanism is far from being fully understood. In this review article, we discuss the results of the studies conducted on these kinds of polymer devices and compare them with the data found in the literature for inorganic retinal prostheses, where the working mechanisms are better comprehended. This comparison, which tries to set some reference values and figures of merit, is intended for use as a starting point to determine the direction for further investigation.


Subject(s)
Polymers/chemistry , Thiophenes/chemistry , Visual Prosthesis/chemistry , Biocompatible Materials/chemistry , HEK293 Cells , Humans , Photochemistry , Retinal Degeneration/therapy
13.
J Thromb Thrombolysis ; 50(3): 718-723, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32112201

ABSTRACT

Anticoagulant therapy has undergone a significant change since direct oral anticoagulants (DOACs) introduction. Their obvious advantages including the fixed dose, the few interactions and less frequent controls, have made them the first choice anticoagulant therapy. More and more patients have therefore switched from therapy with vitamin K antagonists (VKAs) to DOACs. Aim of our study was to assess the satisfaction, quality of life (QoL) and therapy adherence of patients who switched from VKA to DOACs therapy. This single center study evaluated satisfaction and QoL of 107 patients who switched from VKA to DOACs therapy through Anti-Clot Treatment Scale and SF-36 respectively. The questionnaires were administered before therapy change, after 3 months of DOACs therapy and then annually. We also evaluated DOACs therapy adherence with a questionnaire administered each visit and through the measures of DOACs plasma levels. Patients' satisfaction and QoL were high during VKA therapy, but with DOACs we observed an improvement after the first 3 months and then maintained over the time of DOACs therapy. DOACs adherence was excellent, also confirmed by DOACs plasma levels.


Subject(s)
Anticoagulants/therapeutic use , Factor Xa Inhibitors/therapeutic use , Patient Compliance , Patient Satisfaction , Vitamin K/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Anticoagulants/blood , Atrial Fibrillation/drug therapy , Factor Xa Inhibitors/blood , Female , Humans , Male , Middle Aged , Quality of Life , Venous Thromboembolism/drug therapy
14.
J Neurochem ; 148(6): 731-745, 2019 03.
Article in English | MEDLINE | ID: mdl-30582748

ABSTRACT

Reactive oxygen species (ROS) are by-products of physiological mitochondrial metabolism that are involved in several cellular signaling pathways as well as tissue injury and pathophysiological processes, including brain ischemia/reperfusion injury. The mitochondrial respiratory chain is considered a major source of ROS; however, there is little agreement on how ROS release depends on oxygen concentration. The rate of H2 O2 release by intact brain mitochondria was measured with an Amplex UltraRed assay using a high-resolution respirometer (Oroboros) equipped with a fluorescent optical module and a system of controlled gas flow for varying the oxygen concentration. Three types of substrates were used: malate and pyruvate, succinate and glutamate, succinate alone or glycerol 3-phosphate. For the first time we determined that, with any substrate used in the absence of inhibitors, H2 O2 release by respiring brain mitochondria is linearly dependent on the oxygen concentration. We found that the highest rate of H2 O2 release occurs in conditions of reverse electron transfer when mitochondria oxidize succinate or glycerol 3-phosphate. H2 O2 production by complex III is significant only in the presence of antimycin A and, in this case, the oxygen dependence manifested mixed (linear and hyperbolic) kinetics. We also demonstrated that complex II in brain mitochondria could contribute to ROS generation even in the absence of its substrate succinate when the quinone pool is reduced by glycerol 3-phosphate. Our results underscore the critical importance of reverse electron transfer in the brain, where a significant amount of succinate can be accumulated during ischemia providing a backflow of electrons to complex I at the early stages of reperfusion. Our study also demonstrates that ROS generation in brain mitochondria is lower under hypoxic conditions than in normoxia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Brain/metabolism , Mitochondria/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Animals , Antimycin A/pharmacology , Brain/drug effects , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cell Respiration/drug effects , Cell Respiration/physiology , Electron-Transferring Flavoproteins/drug effects , Electron-Transferring Flavoproteins/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Mice , Mitochondria/drug effects , Oxygen Consumption/physiology
15.
Hum Mol Genet ; 26(7): 1318-1327, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28186560

ABSTRACT

The mitochondrial unfolded protein response (UPRmt) is a transcriptional program aimed at restoring proteostasis in mitochondria. Upregulation of mitochondrial matrix proteases and heat shock proteins was initially described. Soon thereafter, a distinct UPRmt induced by misfolded proteins in the mitochondrial intermembrane space (IMS) and mediated by the estrogen receptor alpha (ERα), was found to upregulate the proteasome and the IMS protease OMI. However, the IMS-UPRmt was never studied in a neurodegenerative disease in vivo. Thus, we investigated the IMS-UPRmt in the G93A-SOD1 mouse model of familial ALS, since mutant SOD1 is known to accumulate in the IMS of neural tissue and cause mitochondrial dysfunction. As the ERα is most active in females, we postulated that a differential involvement of the IMS-UPRmt could be linked to the longer lifespan of females in the G93A-SOD1 mouse. We found a significant sex difference in the IMS-UPRmt, because the spinal cords of female, but not male, G93A-SOD1 mice showed elevation of OMI and proteasome activity. Then, using a mouse in which G93A-SOD1 was selectively targeted to the IMS, we demonstrated that the IMS-UPRmt could be specifically initiated by mutant SOD1 localized in the IMS. Furthermore, we showed that, in the absence of ERα, G93A-SOD1 failed to activate OMI and the proteasome, confirming the ERα dependence of the response. Taken together, these results demonstrate the IMS-UPRmt activation in SOD1 familial ALS, and suggest that sex differences in the disease phenotype could be linked to differential activation of the ERα axis of the IMS-UPRmt.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Estrogen Receptor alpha/genetics , Mitochondria/genetics , Superoxide Dismutase/genetics , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Estrogen Receptor alpha/metabolism , Female , Heat-Shock Proteins/genetics , High-Temperature Requirement A Serine Peptidase 2 , Humans , Male , Mice , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Sex Characteristics , Unfolded Protein Response/genetics
16.
J Cell Sci ; 130(21): 3713-3727, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28864766

ABSTRACT

cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca2+ signaling.


Subject(s)
Adenylyl Cyclases/metabolism , Calcium Signaling , Calcium/metabolism , Cyclic AMP/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Adenylyl Cyclases/genetics , Animals , Cell Fractionation , Cell Line , Endoplasmic Reticulum/ultrastructure , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Gene Knockout Techniques , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice , Mitochondria/ultrastructure , Oxidative Phosphorylation , Oxygen Consumption
17.
Acta Neuropathol ; 138(1): 103-121, 2019 07.
Article in English | MEDLINE | ID: mdl-30877432

ABSTRACT

Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10), a mitochondrial protein of unknown function, cause a disease spectrum with clinical features of motor neuron disease, dementia, myopathy and cardiomyopathy. To investigate the pathogenic mechanisms of CHCHD10, we generated mutant knock-in mice harboring the mouse-equivalent of a disease-associated human S59L mutation, S55L in the endogenous mouse gene. CHCHD10S55L mice develop progressive motor deficits, myopathy, cardiomyopathy and accelerated mortality. Critically, CHCHD10 accumulates in aggregates with its paralog CHCHD2 specifically in affected tissues of CHCHD10S55L mice, leading to aberrant organelle morphology and function. Aggregates induce a potent mitochondrial integrated stress response (mtISR) through mTORC1 activation, with elevation of stress-induced transcription factors, secretion of myokines, upregulated serine and one-carbon metabolism, and downregulation of respiratory chain enzymes. Conversely, CHCHD10 ablation does not induce disease pathology or activate the mtISR, indicating that CHCHD10S55L-dependent disease pathology is not caused by loss-of-function. Overall, CHCHD10S55L mice recapitulate crucial aspects of human disease and reveal a novel toxic gain-of-function mechanism through maladaptive mtISR and metabolic dysregulation.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Gain of Function Mutation/genetics , Mitochondria/genetics , Animals , Genetic Association Studies , Mice, Transgenic , Mitochondria/pathology , Mitochondrial Membranes/metabolism , Mutation/genetics , Parkinson Disease/genetics
18.
Neurochem Res ; 44(10): 2336-2345, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30863968

ABSTRACT

Brain and heart ischemia are among the leading causes of death and disability in both men and women, but there are significant sex differences in the incidence and severity of these diseases. Ca2+ dysregulation in response to ischemia/reperfusion injury (I/RI) is a well-recognized pathogenic mechanism leading to the death of affected cells. Excess intracellular Ca2+ causes mitochondrial matrix Ca2+ overload that can result in mitochondrial permeability transition (MPT), which can have severe consequences for mitochondrial function and trigger cell death. Recent findings indicate that estrogens and their related receptors are involved in the regulation of MPT, suggesting that sex differences in I/RI could be linked to estrogen-dependent modulation of mitochondrial Ca2+. Here, we review the evidence supporting sex differences in I/RI and the role of estrogen and estrogen receptors in producing these differences, the involvement of mitochondrial Ca2+ overload in disease pathogenesis, and the estrogen-dependent modulation of MPT that may contribute to sex differences.


Subject(s)
Mitochondria/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis/physiology , Reperfusion Injury/metabolism , Sex Characteristics , Animals , Calcium/metabolism , Humans , Permeability
19.
Biochim Biophys Acta Bioenerg ; 1859(6): 423-433, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29550215

ABSTRACT

Recent evidence highlights a role for sex and hormonal status in regulating cellular responses to ischemic brain injury and neurodegeneration. A key pathological event in ischemic brain injury is the opening of a mitochondrial permeability transition pore (MPT) induced by excitotoxic calcium levels, which can trigger irreversible damage to mitochondria accompanied by the release of pro-apoptotic factors. However, sex differences in brain MPT modulation have not yet been explored. Here, we show that mitochondria isolated from female mouse forebrain have a lower calcium threshold for MPT than male mitochondria, and that this sex difference depends on the MPT regulator cyclophilin D (CypD). We also demonstrate that an estrogen receptor beta (ERß) antagonist inhibits MPT and knockout of ERß decreases the sensitivity of mitochondria to the CypD inhibitor, cyclosporine A. These results suggest a functional relationship between ERß and CypD in modulating brain MPT. Moreover, co-immunoprecipitation studies identify several ERß binding partners in mitochondria. Among these, we investigate the mitochondrial ATPase as a putative site of MPT regulation by ERß. We find that previously described interaction between the oligomycin sensitivity-conferring subunit of ATPase (OSCP) and CypD is decreased by ERß knockout, suggesting that ERß modulates MPT by regulating CypD interaction with OSCP. Functionally, in primary neurons and hippocampal slice cultures, modulation of ERß has protective effects against glutamate toxicity and oxygen glucose deprivation, respectively. Taken together, these results reveal a novel pathway of brain MPT regulation by ERß that could contribute to sex differences in ischemic brain injury and neurodegeneration.


Subject(s)
Adenosine Triphosphatases/genetics , Carrier Proteins/genetics , Cyclophilins/genetics , Estrogen Receptor beta/genetics , Hippocampus/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Prosencephalon/metabolism , Adenosine Triphosphatases/metabolism , Animals , COS Cells , Calcium/metabolism , Carrier Proteins/metabolism , Chlorocebus aethiops , Peptidyl-Prolyl Isomerase F , Cyclophilins/antagonists & inhibitors , Cyclophilins/deficiency , Cyclosporine/pharmacology , Estrogen Receptor beta/antagonists & inhibitors , Estrogen Receptor beta/deficiency , Female , Hippocampus/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtomy , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases , Piperidines/pharmacology , Prosencephalon/drug effects , Protein Binding , Pyrazoles/pharmacology , Sex Factors , Tissue Culture Techniques
20.
Stroke ; 49(5): 1223-1231, 2018 05.
Article in English | MEDLINE | ID: mdl-29643256

ABSTRACT

BACKGROUND AND PURPOSE: Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. METHODS: We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. RESULTS: Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester. CONCLUSIONS: Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.


Subject(s)
Brain/metabolism , Electron Transport Complex I/metabolism , Flavin Mononucleotide/metabolism , Glutathione/metabolism , Infarction, Middle Cerebral Artery/metabolism , Mitochondria/metabolism , Reperfusion Injury/metabolism , Animals , Brain/drug effects , Brain Ischemia/metabolism , Cerebrovascular Circulation , Citrate (si)-Synthase/drug effects , Citrate (si)-Synthase/metabolism , Disease Models, Animal , Electron Transport Complex I/drug effects , Energy Metabolism , Glutathione/analogs & derivatives , Glutathione/pharmacology , Male , Mice , Mitochondria/drug effects , Oxidative Stress/drug effects , Random Allocation , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL