Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nature ; 627(8005): 783-788, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538937

ABSTRACT

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

3.
Nat Mater ; 22(6): 725-730, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36894773

ABSTRACT

The discovery of spin-transfer torque (STT) enabled the control of the magnetization direction in magnetic devices in nanoseconds using an electrical current. Ultrashort optical pulses have also been used to manipulate the magnetization of ferrimagnets at picosecond timescales by bringing the system out of equilibrium. So far, these methods of magnetization manipulation have mostly been developed independently within the fields of spintronics and ultrafast magnetism. Here we show optically induced ultrafast magnetization reversal taking place within less than a picosecond in rare-earth-free archetypal spin valves of [Pt/Co]/Cu/[Co/Pt] commonly used for current-induced STT switching. We find that the magnetization of the free layer can be switched from a parallel to an antiparallel alignment, as in STT, indicating the presence of an unexpected, intense and ultrafast source of opposite angular momentum in our structures. Our findings provide a route to ultrafast magnetization control by bridging concepts from spintronics and ultrafast magnetism.

4.
Nano Lett ; 21(5): 1943-1947, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33605143

ABSTRACT

We use ab initio real-time time-dependent density functional theory to investigate the effect of optical and extreme ultraviolet (XUV) circularly polarized femtosecond pulses on the magnetization dynamics of ferromagnetic materials. We demonstrate that the light induces a helicity-dependent reduction of the magnitude of the magnetization. In the XUV regime, where the 3p semicore states are involved, a larger helicity dependence persisting even after the passage of light is exhibited. Finally, we were able to separate the part of the helicity-dependent dynamics due to the absorption from the part due to the inverse Faraday effect. Doing so, we show that the former has, overall, a greater impact on the magnetization than the latter, especially after the pulse and in the XUV regime. This work hints at the yet experimentally unexplored territory of the XUV light-induced helicity-dependent dynamics, which, according to our prediction, could magnify the helicity-dependent dynamics already exhibited in the optical regime.

5.
Nano Lett ; 20(12): 8654-8660, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33226825

ABSTRACT

Since it was recently demonstrated in a spin-valve structure, magnetization reversal of a ferromagnetic layer using a single ultrashort optical pulse has attracted attention for future ultrafast and energy-efficient magnetic storage or memory devices. However, the mechanism and the role of the magnetic properties of the ferromagnet as well as the time scale of the magnetization switching are not understood. Here, we investigate single-shot all-optical magnetization switching in a GdFeCo/Cu/[CoxNi1-x/Pt] spin-valve structure. We demonstrate that the threshold fluence for switching both the GdFeCo and the ferromagnetic layer depends on the laser pulse duration and the thickness and the Curie temperature of the ferromagnetic layer. We are able to explain most of the experimental results using a phenomenological model. This work provides a way to engineer ferromagnetic materials for energy efficient single-shot all-optical magnetization switching.

6.
Nano Lett ; 19(5): 3019-3026, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30933564

ABSTRACT

Study of resonant tunneling through multimetallic quantum well (QW) structure is not only important for the fundamental understanding of quantum transport but also for the great potential to generate advanced functionalities of spintronic devices. However, it remains challenging to engineer such a structure due to the short electron phase coherence length in metallic QW system. Here, we demonstrate the successful fabrication of double-QW structure in a single fully epitaxial magnetic tunnel junction (MTJ) heterostructure, where two Fe QW layers are sandwiched between three MgAlO x tunnel barriers. We show clear evidence of the coherent resonant tunneling through the discrete QW states in the two QWs. The coherent resonant tunneling condition is fulfilled only when the middle barrier between the two QWs is thin enough and available QW states are present simultaneously in both QWs under a certain bias. Compared to the single QW structure, the resonant tunneling in double-QW MTJ produces strong conductivity oscillations with much narrower peak width (about half) owing to the enhanced energy filtering effect. This study presents a comprehensive understanding of the resonant tunneling mechanism in MTJ with multiple QWs, which is essential for future development of new spintronic devices operating in the quantum tunneling regime.

7.
Nano Lett ; 19(1): 90-99, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30472859

ABSTRACT

Due to the difficulty of growing high-quality semiconductors on ferromagnetic metals, the study of spin diffusion transport in Si was limited to lateral geometry devices. In this work, by using an ultrahigh-vacuum wafer-bonding technique, we have successfully fabricated metal-semiconductor-metal CoFeB/MgO/Si/Pt vertical structures. We hereby demonstrate pure spin-current injection and transport in the perpendicular current flow geometry over a distance larger than 2 µm in n-type Si at room temperature. In those experiments, a pure propagating spin current is generated via ferromagnetic resonance spin pumping and converted into a measurable voltage by using the inverse spin Hall effect occurring in the top Pt layer. A systematic study varying both Si and MgO thicknesses reveals the important role played by the localized states at the MgO-Si interface for the spin-current generation. Proximity effects involving indirect exchange interactions between the ferromagnet and the MgO-Si interface states appears to be a prerequisite to establishing the necessary out-of-equilibrium spin population in Si under the spin-pumping action.

8.
Phys Rev Lett ; 123(2): 027202, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386535

ABSTRACT

We demonstrate that femtosecond laser pulses allow triggering high-frequency standing spin-wave modes in nanoscale thin films of a bismuth-substituted yttrium iron garnet. By varying the strength of the external magnetic field, we prove that two distinct branches of the dispersion relation are excited for all the modes. This is reflected in particular at a very weak magnetic field (∼33 mT) by a spin dynamics with a frequency up to 15 GHz, which is 15 times higher than the one associated with the ferromagnetic resonance mode. We argue that this phenomenon is triggered by ultrafast changes of the magnetic anisotropy via laser excitation of incoherent and coherent phonons. These findings open exciting prospects for ultrafast photo magnonics.

9.
Nano Lett ; 18(11): 7362-7371, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30295499

ABSTRACT

Magnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate controlled generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature by a single ultrafast (35 fs) laser pulse. The skyrmion bubble density increases with the laser fluence, and it finally becomes saturated, forming disordered hexagonal lattices. Moreover, we present that the skyrmion bubble lattice configuration leads to enhanced topological stability as compared to isolated skyrmions, suggesting its promising use in data storage. Our findings shed light on the optical approach to the skyrmion bubble lattice in commonly accessible materials, paving the road toward the emerging skyrmion-based memory and synaptic devices.

10.
Nano Lett ; 18(4): 2381-2386, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29517243

ABSTRACT

The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X+) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

11.
Nat Commun ; 15(1): 4958, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862508

ABSTRACT

An antiferromagnet emits spin currents when time-reversal symmetry is broken. This is typically achieved by applying an external magnetic field below and above the spin-flop transition or by optical pumping. In this work we apply optical pump-THz emission spectroscopy to study picosecond spin pumping from metallic FeRh as a function of temperature. Intriguingly we find that in the low-temperature antiferromagnetic phase the laser pulse induces a large and coherent spin pumping, while not crossing into the ferromagnetic phase. With temperature and magnetic field dependent measurements combined with atomistic spin dynamics simulations we show that the antiferromagnetic spin-lattice is destabilised by the combined action of optical pumping and picosecond spin-biasing by the conduction electron population, which results in spin accumulation. We propose that the amplitude of the effect is inherent to the nature of FeRh, particularly the Rh atoms and their high spin susceptibility. We believe that the principles shown here could be used to produce more effective spin current emitters. Our results also corroborate the work of others showing that the magnetic phase transition begins on a very fast picosecond timescale, but this timescale is often hidden by measurements which are confounded by the slower domain dynamics.

12.
Nat Commun ; 15(1): 1589, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383494

ABSTRACT

Single-shot real-time femtophotography is indispensable for imaging ultrafast dynamics during their times of occurrence. Despite their advantages over conventional multi-shot approaches, existing techniques confront restricted imaging speed or degraded data quality by the deployed optoelectronic devices and face challenges in the application scope and acquisition accuracy. They are also hindered by the limitations in the acquirable information imposed by the sensing models. Here, we overcome these challenges by developing swept coded aperture real-time femtophotography (SCARF). This computational imaging modality enables all-optical ultrafast sweeping of a static coded aperture during the recording of an ultrafast event, bringing full-sequence encoding of up to 156.3 THz to every pixel on a CCD camera. We demonstrate SCARF's single-shot ultrafast imaging ability at tunable frame rates and spatial scales in both reflection and transmission modes. Using SCARF, we image ultrafast absorption in a semiconductor and ultrafast demagnetization of a metal alloy.

13.
Adv Mater ; 36(21): e2311643, 2024 May.
Article in English | MEDLINE | ID: mdl-38407359

ABSTRACT

Ultrafast manipulation of magnetic order has challenged the understanding of the fundamental and dynamic properties of magnetic materials. So far single-shot magnetic switching has been limited to ferrimagnetic alloys, multilayers, and designed ferromagnetic (FM) heterostructures. In FM/antiferromagnetic (AFM) bilayers, exchange bias (He) arises from the interfacial exchange coupling between the two layers and reflects the microscopic orientation of the antiferromagnet. Here the possibility of single-shot switching of the antiferromagnet (change of the sign and amplitude of He) with a single femtosecond laser pulse in IrMn/CoGd bilayers is demonstrated. The manipulation is demonstrated in a wide range of fluences for different layer thicknesses and compositions. Atomistic simulations predict ultrafast switching and recovery of the AFM magnetization on a timescale of 2 ps. The results provide the fastest and the most energy-efficient method to set the exchange bias and pave the way to potential applications for ultrafast spintronic devices.

14.
Nanoscale Horiz ; 8(7): 900-911, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37140260

ABSTRACT

A method for subsurface visualization and characterization of hidden subsurface nano-structures based on scanning tunelling microscopy/spectroscopy (STM/STS) has been developed. Nano-objects buried under a metal surface up to several tens of nanometers can be visualized through the metal surface and characterized with STM without destroying the sample. This non-destructive method exploits quantum well (QW) states formed by partial electron confinement between the surface and buried nano-objects. The specificity of STM allows for nano-objects to be singled out and easily accessed. Their burial depth can be determined by analysing the oscillatory behaviour of the electron density at the surface of the sample, while the spatial distribution of electron density can give additional information about their size and shape. The proof of concept was demonstrated with different materials such as Cu, Fe, and W in which the nanoclusters of Ar, H, Fe and Co were buried. For each material, the maximal depth of subsurface visualisation is determined by the material parameters and ranges from several nanometers to several tens of nanometers. To demonstrate the ultimate depth of subsurface STM-vision as the principal limit of our approach, the system of Ar nanoclusters embedded into a single-crystalline Cu(110) matrix has been chosen since it represents the best combination of the mean free path, smooth interface and inner electron focusing. With this system we experimentally demonstrated that Ar nanoclusters of several nanometers large buried as deep as 80 nm can still be detected, characterized and imaged. The ultimate depth of this ability is estimated to be 110 nm. This approach using QW states paves the way for enhanced 3D characterization of nanostructures hidden well below a metallic surface.

15.
Nat Commun ; 14(1): 445, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36707525

ABSTRACT

When exciting a magnetic material with a femtosecond laser pulse, the amplitude of magnetization is no longer constant and can decrease within a time scale comparable to the duration of the optical excitation. This ultrafast demagnetization can even trigger an ultrafast, out of equilibrium, phase transition to a paramagnetic state. The reciprocal effect, namely an ultrafast remagnetization from the zero magnetization state, is a necessary ingredient to achieve a complete ultrafast reversal. However, the speed of remagnetization is limited by the universal critical slowing down which appears close to a phase transition. Here we demonstrate that magnetization can be reversed in a few hundreds of femtoseconds by overcoming the critical slowing down thanks to ultrafast spin cooling and spin heating mechanisms. We foresee that these results outline the potential of ultrafast spintronics for future ultrafast and energy efficient magnetic memory and storage devices. Furthermore, this should motivate further theoretical works in the field of femtosecond magnetization reversal.

16.
Adv Sci (Weinh) ; 10(4): e2204683, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36507620

ABSTRACT

The impact of plasmonic surface lattice resonances on the magneto-optical properties and energy absorption efficiency has been studied in arrays of [Co/Gd/Pt]N multilayer nanodisks. Varying the light wavelength, the disk diameter, and the period of the array, it is demonstrated that surface lattice resonances allow all-optical single pulse switching of [Co/Gd/Pt]N nanodisk arrays with an energy 400% smaller than the energy needed to switch a continuous [Co/Gd/Pt]N film. Moreover, the magneto-optical Faraday effect is enhanced at the resonance condition by up to 5,000%. The influence of the disk diameter and array period on the amplitude, width and position of the surface lattice resonances is in qualitative agreement with theoretical calculations and opens the way to designing magnetic metasurfaces for all-optical magnetization switching applications.

17.
ACS Appl Mater Interfaces ; 15(4): 5608-5619, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36689950

ABSTRACT

Manipulating magnetic skyrmions by means of a femtosecond (fs) laser pulse has attracted great interest due to their promising applications in efficient information-storage devices with ultralow energy consumption. However, the mechanism underlying the creation of skyrmions induced by an fs laser is still lacking. As a result, a key challenge is to reveal the pathway for the massive reorientation of magnetization from trivial to nontrivial topological states. Here, we studied a series of ferrimagnetic CoHo alloys and investigated the effect of a single laser pulse on the magnetic states. Thanks to the time-resolved magneto-optical Kerr effect and imaging techniques, we demonstrate that the laser-induced phase transitions from single domains into a topological skyrmion phase are mediated by the transient in-plane magnetization state, in real time and space domains, respectively. Combining experiments and micromagnetic simulations, we propose a two-step process for creating skyrmions through laser pulse irradiation: (i) the electron temperature enhancement induces a spin reorientation transition on a picosecond (ps) timescale due to the suppression of perpendicular magnetic anisotropy (PMA) and (ii) the PMA slowly restores, accompanied by out-of-plane magnetization recovery, leading to the generation of skyrmions with the help of spin fluctuations. This work provides a route to control skyrmion patterns using an fs laser, thereby establishing the foundation for further exploration of topological magnetism at ultrafast timescales.

18.
Nat Commun ; 14(1): 2483, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120587

ABSTRACT

Despite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (Tc) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material Fe4GeTe2 with the Tc reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations. Theoretical calculations suggested that the interface-induced right shift of the localized states for unpaired Fe d electrons is the reason for the enhanced Tc, which was confirmed by ultraviolet photoelectron spectroscopy. Moreover, by precisely tailoring Fe concentration we achieved arbitrary control of magnetic anisotropy between out-of-plane and in-plane without inducing any phase disorders. Our finding sheds light on the high potential of Fe4GeTe2 in spintronics, which may open opportunities for room-temperature application of all-vdW spintronic devices.

19.
Phys Rev Lett ; 107(3): 033904, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21838360

ABSTRACT

We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L3 edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

20.
ACS Sens ; 6(12): 4315-4324, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34842420

ABSTRACT

The effect of the stray field of Fe/Fe3O4 nanoparticles on the angular dependence of the microwave absorption derivative in CoFeB/Ta/CoFeB synthetic ferrimagnetic structures and CoFeB films with perpendicular anisotropy is analyzed, and its application for sensor technology is proposed. The effective field of the "platform-particles" system controlled by the magnetic dipole interaction of the CoFeB-Fe/Fe3O4 system decreased to zero in areas where the platform was magnetostatically coupled with nanoparticles. Micromagnetic modeling demonstrated the distribution of magnetization and resistance in local areas of CoFeB/Ta/CoFeB structures under the nanoparticles. The microwave absorption derivative can be used as an indicator of local magnetization switching of the giant magnetoresistance (GMR) structure under scattering fields of NPs or magnetically labeled cells. The limiting sensitivity of the detection method was 2.4 × 107 nanoparticles, which covered the spin-valve surface. We have proposed to combine the advantages of a GMR sensor with wireless technology of microwave reading of magnetoresistance for the detection of magnetically labeled cells.


Subject(s)
Microwaves , Nanoparticles , Magnetics , Magnets
SELECTION OF CITATIONS
SEARCH DETAIL