Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Affiliation country
Publication year range
1.
J Am Chem Soc ; 144(30): 13673-13687, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35857885

ABSTRACT

Photoelectrochemical fuel generation is a promising route to sustainable liquid fuels produced from water and captured carbon dioxide with sunlight as the energy input. Development of these technologies requires photoelectrode materials that are both photocatalytically active and operationally stable in harsh oxidative and/or reductive electrochemical environments. Such photocatalysts can be discovered based on co-design principles, wherein design for stability is based on the propensity for the photocatalyst to self-passivate under operating conditions and design for photoactivity is based on the ability to integrate the photocatalyst with established semiconductor substrates. Here, we report on the synthesis and characterization of zinc titanium nitride (ZnTiN2) that follows these design rules by having a wurtzite-derived crystal structure and showing self-passivating surface oxides created by electrochemical polarization. The sputtered ZnTiN2 thin films have optical absorption onsets below 2 eV and n-type electrical conduction of 3 S/cm. The band gap of this material is reduced from the 3.36 eV theoretical value by cation-site disorder, and the impact of cation antisites on the band structure of ZnTiN2 is explored using density functional theory. Under electrochemical polarization, the ZnTiN2 surfaces have TiO2- or ZnO-like character, consistent with Materials Project Pourbaix calculations predicting the formation of stable solid phases under near-neutral pH. These results show that ZnTiN2 is a promising candidate for photoelectrochemical liquid fuel generation and demonstrate a new materials design approach to other photoelectrodes with self-passivating native operational surface chemistry.

2.
Proc Natl Acad Sci U S A ; 116(30): 14829-14834, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31270238

ABSTRACT

Inorganic nitrides with wurtzite crystal structures are well-known semiconductors used in optical and electronic devices. In contrast, rocksalt-structured nitrides are known for their superconducting and refractory properties. Breaking this dichotomy, here we report ternary nitride semiconductors with rocksalt crystal structures, remarkable electronic properties, and the general chemical formula Mgx TM 1-xN (TM = Ti, Zr, Hf, Nb). Our experiments show that these materials form over a broad metal composition range, and that Mg-rich compositions are nondegenerate semiconductors with visible-range optical absorption onsets (1.8 to 2.1 eV) and up to 100 cm2 V-1⋅s-1 electron mobility for MgZrN2 grown on MgO substrates. Complementary ab initio calculations reveal that these materials have disorder-tunable optical absorption, large dielectric constants, and electronic bandgaps that are relatively insensitive to disorder. These ternary Mgx TM 1-xN semiconductors are also structurally compatible both with binary TMN superconductors and main-group nitride semiconductors along certain crystallographic orientations. Overall, these results highlight Mgx TM 1-xN as a class of materials combining the semiconducting properties of main-group wurtzite nitrides and rocksalt structure of superconducting transition-metal nitrides.

3.
J Am Chem Soc ; 140(12): 4293-4301, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29494134

ABSTRACT

We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn3MoN4 and ZnMoN2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn3MoN4 to ZnMoN2 in the wurtzite-derived structure, accommodating very large off-stoichiometry. Interestingly, the measured wurtzite-derived structure of the alloys is metastable for the ZnMoN2 stoichiometry, in contrast to the Zn3MoN4 stoichiometry, where ordered wurtzite is predicted to be the ground state. The formation of Zn3MoN4-ZnMoN2 alloy with wurtzite-derived crystal structure is enabled by the concomitant ability of Mo to change oxidation state from +VI in Zn3MoN4 to +IV in ZnMoN2, and the capability of Zn to contribute to the bonding states of both compounds, an effect that we define as "redox-mediated stabilization". The stabilization of Mo in both the +VI and +IV oxidation states is due to the intermediate electronegativity of Zn, which enables significant polar covalent bonding in both Zn3MoN4 and ZnMoN2 compounds. The smooth change in the Mo oxidation state between Zn3MoN4 and ZnMoN2 stoichiometries leads to a continuous change in optoelectronic properties-from resistive and semitransparent Zn3MoN4 to conductive and absorptive ZnMoN2. The reported redox-mediated stabilization in zinc molybdenum nitrides suggests there might be many undiscovered ternary compounds with one metal having an intermediate electronegativity, enabling significant covalent bonding, and another metal capable of accommodating multiple oxidation states, enabling stoichiometric flexibility.

4.
Chem Mater ; 36(7): 3164-3176, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617805

ABSTRACT

Cation disorder is an established feature of heterovalent ternary nitrides, a promising class of semiconductor materials. A recently synthesized wurtzite-family ternary nitride, ZnTiN2, shows potential for durable photoelectrochemical applications with a measured optical absorption onset of 2 eV, which is 1.4 eV lower than previously predicted, a large difference attributed to cation disorder. Here, we use first-principles calculations based on density functional theory to establish the role of cation disorder in the electronic and optical properties of ZnTiN2. We compute antisite defect arrangement formation energies for one hundred 128-atom supercells and analyze their trends and their effect on electronic structures, rationalizing experimental results. We demonstrate that charge imbalance created by antisite defects in Ti and N local environments, respectively, broadens the conduction and valence bands near the band edges, reducing the band gap relative to the cation-ordered limit, a general mechanism relevant to other multivalent ternary nitrides. Charge-imbalanced antisite defect arrangements that lead to N-centered tetrahedral motifs fully coordinated by Zn are the most energetically costly and introduce localized in-gap states; cation arrangements that better preserve local charge balance have smaller formation energies and have less impact on the electronic structure. Our work provides insights into the nature of cation disorder in the newly synthesized semiconductor ZnTiN2, with implications for its performance in energy applications, and provides a baseline for the future study of controlling cation order in ZnTiN2 and other ternary nitrides.

5.
ACS Omega ; 8(47): 45088-45095, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046304

ABSTRACT

We couple halide vapor phase epitaxy (HVPE) growth of III-V materials with liftoff from an ultrathin carbon release layer to address two significant cost components in III-V device - epitaxial growth and substrate reusability. We investigate nucleation and growth of GaAs layers by HVPE on a thin amorphous carbon layer that can be mechanically exfoliated, leaving the substrate available for reuse. We study nucleation as a function of carbon layer thickness and growth rate and find island-like nucleation. We then study various GaAs growth conditions, including V/III ratio, growth temperature, and growth rate in an effort to minimize film roughness. High growth rates and thicker films lead to drastically smoother surfaces with reduced threading dislocation density. Finally, we grow an initial photovoltaic device on a carbon release layer that has an efficiency of 7.2%. The findings of this work show that HVPE growth is compatible with a carbon release layer and presents a path toward lowering the cost of photovoltaics with high throughput growth and substrate reuse.

6.
Ultramicroscopy ; 188: 48-51, 2018 05.
Article in English | MEDLINE | ID: mdl-29549789

ABSTRACT

Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.

7.
Nat Commun ; 9(1): 2553, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959330

ABSTRACT

Hydrothermal synthesis is challenging in metal oxide systems with diverse polymorphism, as reaction products are often sensitive to subtle variations in synthesis parameters. This sensitivity is rooted in the non-equilibrium nature of low-temperature crystallization, where competition between different metastable phases can lead to complex multistage crystallization pathways. Here, we propose an ab initio framework to predict how particle size and solution composition influence polymorph stability during nucleation and growth. We validate this framework using in situ X-ray scattering, by monitoring how the hydrothermal synthesis of MnO2 proceeds through different crystallization pathways under varying solution potassium ion concentrations ([K+] = 0, 0.2, and 0.33 M). We find that our computed size-dependent phase diagrams qualitatively capture which metastable polymorphs appear, the order of their appearance, and their relative lifetimes. Our combined computational and experimental approach offers a rational and systematic paradigm for the aqueous synthesis of target metal oxides.

8.
Adv Mater ; 30(25): e1800559, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29744947

ABSTRACT

Many technologically critical materials are metastable under ambient conditions, yet the understanding of how to rationally design and guide the synthesis of these materials is limited. This work presents an integrated approach that targets a metastable lead-free piezoelectric polymorph of SrHfO3 . First-principles calculations predict that the previous experimentally unrealized, metastable P4mm phase of SrHfO3 should exhibit a direct piezoelectric response (d33 ) of 36.9 pC N-1 (compared to d33 = 0 for the ground state). Combining computationally optimized substrate selection and synthesis conditions lead to the epitaxial stabilization of the polar P4mm phase of SrHfO3 on SrTiO3 . The films are structurally consistent with the theory predictions. A ferroelectric-induced large signal effective converse piezoelectric response of 5.2 pm V-1 for a 35 nm film is observed, indicating the ability to predict and target multifunctionality. This illustrates a coupled theory-experimental approach to the discovery and realization of new multifunctional polymorphs.

9.
Sci Rep ; 7(1): 15232, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123137

ABSTRACT

Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO2 growth, contributing to the further development of this promising functional material.

SELECTION OF CITATIONS
SEARCH DETAIL