Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cell ; 184(5): 1262-1280.e22, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636129

ABSTRACT

Improving effector activity of antigen-specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (TEFF)-driving transcription factors (TFs), the transcriptional coordination of TEFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced TEFF responses without compromising memory or exhaustion precursors. Fli1 restrained TEFF lineage differentiation by binding to cis-regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs, allowing more efficient Runx3-driven TEFF biology. CD8+ T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8+ T cell transcriptional landscape from excessive ETS:RUNX-driven TEFF cell differentiation. Moreover, genetic deletion of Fli1 improves TEFF differentiation and protective immunity in infections and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Proto-Oncogene Protein c-fli-1/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CRISPR-Cas Systems , Cell Differentiation , Chronic Disease , Core Binding Factor Alpha 3 Subunit/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Infections/immunology , Mice , Neoplasms/immunology
2.
Nat Immunol ; 24(11): 1947-1959, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845489

ABSTRACT

Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.


Subject(s)
T-Lymphocyte Subsets , Transcriptome , Child , Humans , Aged , Aging/genetics , Epitopes/metabolism , Single-Cell Analysis
3.
Cell ; 183(7): 1946-1961.e15, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33306960

ABSTRACT

Lymphocyte migration is essential for adaptive immune surveillance. However, our current understanding of this process is rudimentary, because most human studies have been restricted to immunological analyses of blood and various tissues. To address this knowledge gap, we used an integrated approach to characterize tissue-emigrant lineages in thoracic duct lymph (TDL). The most prevalent immune cells in human and non-human primate efferent lymph were T cells. Cytolytic CD8+ T cell subsets with effector-like epigenetic and transcriptional signatures were clonotypically skewed and selectively confined to the intravascular circulation, whereas non-cytolytic CD8+ T cell subsets with stem-like epigenetic and transcriptional signatures predominated in tissues and TDL. Moreover, these anatomically distinct gene expression profiles were recapitulated within individual clonotypes, suggesting parallel differentiation programs independent of the expressed antigen receptor. Our collective dataset provides an atlas of the migratory immune system and defines the nature of tissue-emigrant CD8+ T cells that recirculate via TDL.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Animals , Cell Differentiation , Clone Cells , Cytotoxicity, Immunologic , Epigenesis, Genetic , Humans , Immunologic Memory , Lymph Nodes/cytology , Lymph Nodes/immunology , Macaca mulatta , T-Lymphocyte Subsets/immunology , Transcription, Genetic , Transcriptome/genetics
4.
Nat Immunol ; 23(6): 868-877, 2022 06.
Article in English | MEDLINE | ID: mdl-35618829

ABSTRACT

Impaired chronic viral and tumor clearance has been attributed to CD8+ T cell exhaustion, a differentiation state in which T cells have reduced and altered effector function that can be partially reversed upon blockade of inhibitory receptors. The role of the exhaustion program and transcriptional networks that control CD8+ T cell function and fate in autoimmunity is not clear. Here we show that intra-islet CD8+ T cells phenotypically, transcriptionally, epigenetically and metabolically possess features of canonically exhausted T cells, yet maintain important differences. This 'restrained' phenotype can be perturbed and disease accelerated by CD8+ T cell-restricted deletion of the inhibitory receptor lymphocyte activating gene 3 (LAG3). Mechanistically, LAG3-deficient CD8+ T cells have enhanced effector-like functions, trafficking to the islets, and have a diminished exhausted phenotype, highlighting a physiological role for an exhaustion program in limiting autoimmunity and implicating LAG3 as a target for autoimmune therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Autoimmunity , Humans , Neoplasms/pathology , Phenotype
5.
Nat Immunol ; 23(11): 1600-1613, 2022 11.
Article in English | MEDLINE | ID: mdl-36271148

ABSTRACT

Naïve CD8+ T cells can differentiate into effector (Teff), memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff, Tmem and Tex populations remain poorly understood. Here, we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets, including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2, as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator, Btg1, in establishing the Tex population. Finally, these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocytic Choriomeningitis , Humans , CD8-Positive T-Lymphocytes/metabolism , Transcriptome , Lymphocytic choriomeningitis virus , Epigenesis, Genetic , Chromatin/genetics , Chromatin/metabolism , Lymphocytic Choriomeningitis/metabolism
6.
Nat Immunol ; 23(8): 1183-1192, 2022 08.
Article in English | MEDLINE | ID: mdl-35902637

ABSTRACT

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.


Subject(s)
Influenza Vaccines , Adult , Humans , Immunity, Humoral , Seasons , T-Lymphocytes, Helper-Inducer , Vaccination
7.
Nat Immunol ; 22(8): 1008-1019, 2021 08.
Article in English | MEDLINE | ID: mdl-34312545

ABSTRACT

Exhausted CD8 T cells (TEX) are a distinct state of T cell differentiation associated with failure to clear chronic viruses and cancer. Immunotherapies such as PD-1 blockade can reinvigorate TEX cells, but reinvigoration is not durable. A major unanswered question is whether TEX cells differentiate into functional durable memory T cells (TMEM) upon antigen clearance. Here, using a mouse model, we found that upon eliminating chronic antigenic stimulation, TEX cells partially (re)acquire phenotypic and transcriptional features of TMEM cells. These 'recovering' TEX cells originated from the T cell factor (TCF-1+) TEX progenitor subset. Nevertheless, the recall capacity of these recovering TEX cells remained compromised as compared to TMEM cells. Chromatin-accessibility profiling revealed a failure to recover core memory epigenetic circuits and maintenance of a largely exhausted open chromatin landscape. Thus, despite some phenotypic and transcriptional recovery upon antigen clearance, exhaustion leaves durable epigenetic scars constraining future immune responses. These results support epigenetic remodeling interventions for TEX cell-targeted immunotherapies.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Immunologic Memory/immunology , Lymphocytic Choriomeningitis/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Line , Chlorocebus aethiops , Cricetinae , Epigenesis, Genetic/genetics , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Transcription, Genetic/genetics , Vero Cells
8.
Nat Immunol ; 21(9): 1010-1021, 2020 09.
Article in English | MEDLINE | ID: mdl-32661362

ABSTRACT

Robust CD8+ T cell memory is essential for long-term protective immunity but is often compromised in cancer, where T cell exhaustion leads to loss of memory precursors. Immunotherapy via checkpoint blockade may not effectively reverse this defect, potentially underlying disease relapse. Here we report that mice with a CD8+ T cell-restricted neuropilin-1 (NRP1) deletion exhibited substantially enhanced protection from tumor rechallenge and sensitivity to anti-PD1 immunotherapy, despite unchanged primary tumor growth. Mechanistically, NRP1 cell-intrinsically limited the self-renewal of the CD44+PD1+TCF1+TIM3- progenitor exhausted T cells, which was associated with their reduced ability to induce c-Jun/AP-1 expression on T cell receptor restimulation, a mechanism that may contribute to terminal T cell exhaustion at the cost of memory differentiation in wild-type tumor-bearing hosts. These data indicate that blockade of NRP1, a unique 'immune memory checkpoint', may promote the development of long-lived tumor-specific Tmem that are essential for durable antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Proteins/metabolism , Melanoma, Experimental/immunology , Neuropilin-1/metabolism , Precursor Cells, T-Lymphoid/immunology , Animals , Cell Line, Tumor , Humans , Immune Checkpoint Proteins/genetics , Immune Tolerance , Immunity , Immunologic Memory , Mice , Mice, Knockout , Neuropilin-1/genetics , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction
9.
Immunity ; 56(6): 1320-1340.e10, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315535

ABSTRACT

CD8+ T cell exhaustion (Tex) limits disease control during chronic viral infections and cancer. Here, we investigated the epigenetic factors mediating major chromatin-remodeling events in Tex-cell development. A protein-domain-focused in vivo CRISPR screen identified distinct functions for two versions of the SWI/SNF chromatin-remodeling complex in Tex-cell differentiation. Depletion of the canonical SWI/SNF form, BAF, impaired initial CD8+ T cell responses in acute and chronic infection. In contrast, disruption of PBAF enhanced Tex-cell proliferation and survival. Mechanistically, PBAF regulated the epigenetic and transcriptional transition from TCF-1+ progenitor Tex cells to more differentiated TCF-1- Tex subsets. Whereas PBAF acted to preserve Tex progenitor biology, BAF was required to generate effector-like Tex cells, suggesting that the balance of these factors coordinates Tex-cell subset differentiation. Targeting PBAF improved tumor control both alone and in combination with anti-PD-L1 immunotherapy. Thus, PBAF may present a therapeutic target in cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Chromatin Assembly and Disassembly , Chromatin , Cell Differentiation , Epigenesis, Genetic
10.
Immunity ; 56(12): 2699-2718.e11, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091951

ABSTRACT

Rewiring exhausted CD8+ T (Tex) cells toward functional states remains a therapeutic challenge. Tex cells are epigenetically programmed by the transcription factor Tox. However, epigenetic remodeling occurs as Tex cells transition from progenitor (Texprog) to intermediate (Texint) and terminal (Texterm) subsets, suggesting development flexibility. We examined epigenetic transitions between Tex cell subsets and revealed a reciprocally antagonistic circuit between Stat5a and Tox. Stat5 directed Texint cell formation and re-instigated partial effector biology during this Texprog-to-Texint cell transition. Constitutive Stat5a activity antagonized Tox and rewired CD8+ T cells from exhaustion to a durable effector and/or natural killer (NK)-like state with superior anti-tumor potential. Temporal induction of Stat5 activity in Tex cells using an orthogonal IL-2:IL2Rß-pair fostered Texint cell accumulation, particularly upon PD-L1 blockade. Re-engaging Stat5 also partially reprogrammed the epigenetic landscape of exhaustion and restored polyfunctionality. These data highlight therapeutic opportunities of manipulating the IL-2-Stat5 axis to rewire Tex cells toward more durably protective states.


Subject(s)
CD8-Positive T-Lymphocytes , Transcription Factors , Transcription Factors/genetics , Interleukin-2 , Gene Expression Regulation , Programmed Cell Death 1 Receptor/metabolism
12.
Immunity ; 55(3): 557-574.e7, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263570

ABSTRACT

The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differentiation and dysfunction. We generated an epigenetic and transcriptional atlas of T cell differentiation from healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we identified modules of gene expression and chromatin accessibility, revealing molecular coordination of differentiation after activation and between central memory and effector memory. Second, we applied this healthy molecular framework to three settings-a neoadjuvant anti-PD1 melanoma trial, a basal cell carcinoma scATAC-seq dataset, and autoimmune disease-associated SNPs-yielding insights into disease-specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach for key effector genes using CRISPR interference, providing functional annotation and demonstrating the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and transcriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a healthy T cell atlas.


Subject(s)
Epigenomics , Lymphocyte Activation , CD8-Positive T-Lymphocytes , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , Humans , Lymphocyte Activation/genetics
13.
Immunity ; 52(5): 825-841.e8, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32396847

ABSTRACT

CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epigenesis, Genetic/immunology , Neoplasms/immunology , T-Lymphocyte Subsets/immunology , Transcription, Genetic/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Epigenesis, Genetic/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Humans , Immunotherapy/methods , Mice, Inbred C57BL , Neoplasms/genetics , Neoplasms/therapy , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Lymphocyte Subsets/metabolism , Transcription, Genetic/genetics
15.
Immunity ; 51(5): 840-855.e5, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31606264

ABSTRACT

TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Gene Regulatory Networks , T Cell Transcription Factor 1/metabolism , Transcription, Genetic , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Chronic Disease , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Mice , Programmed Cell Death 1 Receptor/metabolism , T Cell Transcription Factor 1/genetics , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/virology
16.
Immunity ; 48(5): 1029-1045.e5, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768164

ABSTRACT

Exhausted CD8 T (Tex) cells are immunotherapy targets in chronic infection and cancer, but a comprehensive assessment of Tex cell diversity in human disease is lacking. Here, we developed a transcriptomic- and epigenetic-guided mass cytometry approach to define core exhaustion-specific genes and disease-induced changes in Tex cells in HIV and human cancer. Single-cell proteomic profiling identified 9 distinct Tex cell clusters using phenotypic, functional, transcription factor, and inhibitory receptor co-expression patterns. An exhaustion severity metric was developed and integrated with high-dimensional phenotypes to define Tex cell clusters that were present in healthy subjects, common across chronic infection and cancer or enriched in either disease, linked to disease severity, and changed with HIV therapy. Combinatorial patterns of immunotherapy targets on different Tex cell clusters were also defined. This approach and associated datasets present a resource for investigating human Tex cell biology, with implications for immune monitoring and immunomodulation in chronic infections, autoimmunity, and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epigenomics/methods , Flow Cytometry/methods , Gene Expression Profiling/methods , HIV Infections/immunology , Lung Neoplasms/immunology , CD8-Positive T-Lymphocytes/metabolism , HIV Infections/genetics , HIV Infections/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proteomics/methods , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism
17.
Immunity ; 47(4): 723-738.e5, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29031786

ABSTRACT

Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Caliciviridae Infections/immunology , Cell Differentiation/immunology , Gastroenteritis/immunology , Norovirus/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Caliciviridae Infections/genetics , Caliciviridae Infections/virology , Cell Differentiation/genetics , Cell Line , Cellular Microenvironment/genetics , Cellular Microenvironment/immunology , Gastroenteritis/genetics , Gastroenteritis/virology , Gene Expression Profiling/methods , Gene Ontology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory/genetics , Immunologic Memory/immunology , Mice, Inbred C57BL , Norovirus/physiology , Oligonucleotide Array Sequence Analysis/methods
18.
Nature ; 571(7764): 211-218, 2019 07.
Article in English | MEDLINE | ID: mdl-31207603

ABSTRACT

Exhausted CD8+ T (Tex) cells in chronic infections and cancer have limited effector function, high co-expression of inhibitory receptors and extensive transcriptional changes compared with effector (Teff) or memory (Tmem) CD8+ T cells. Tex cells are important clinical targets of checkpoint blockade and other immunotherapies. Epigenetically, Tex cells are a distinct immune subset, with a unique chromatin landscape compared with Teff and Tmem cells. However, the mechanisms that govern the transcriptional and epigenetic development of Tex cells remain unknown. Here we identify the HMG-box transcription factor TOX as a central regulator of Tex cells in mice. TOX is largely dispensable for the formation of Teff and Tmem cells, but it is critical for exhaustion: in the absence of TOX, Tex cells do not form. TOX is induced by calcineurin and NFAT2, and operates in a feed-forward loop in which it becomes calcineurin-independent and sustained in Tex cells. Robust expression of TOX therefore results in commitment to Tex cells by translating persistent stimulation into a distinct Tex cell transcriptional and epigenetic developmental program.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Epistasis, Genetic , Homeodomain Proteins/metabolism , Transcription, Genetic , Animals , Calcineurin/metabolism , Calcium Signaling , Feedback, Physiological , Female , Gene Expression Regulation/immunology , Genotype , Immunologic Memory , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Tumor Escape
19.
Proc Natl Acad Sci U S A ; 119(17): e2106083119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35446623

ABSTRACT

CD8 T cells mediate protection against intracellular pathogens and tumors. However, persistent antigen during chronic infections or cancer leads to T cell exhaustion, suboptimal functionality, and reduced protective capacity. Despite considerable work interrogating the transcriptional regulation of exhausted CD8 T cells (TEX), the posttranscriptional control of TEX remains poorly understood. Here, we interrogated the role of microRNAs (miRs) in CD8 T cells responding to acutely resolved or chronic viral infection and identified miR-29a as a key regulator of TEX. Enforced expression of miR-29a improved CD8 T cell responses during chronic viral infection and antagonized exhaustion. miR-29a inhibited exhaustion-driving transcriptional pathways, including inflammatory and T cell receptor signaling, and regulated ribosomal biogenesis. As a result, miR-29a fostered a memory-like CD8 T cell differentiation state during chronic infection. Thus, we identify miR-29a as a key regulator of TEX and define mechanisms by which miR-29a can divert exhaustion toward a more beneficial memory-like CD8 T cell differentiation state.


Subject(s)
MicroRNAs , Neoplasms , CD8-Positive T-Lymphocytes , Humans , Immunotherapy/methods , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/metabolism , Persistent Infection
20.
Nature ; 545(7652): 60-65, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28397821

ABSTRACT

Despite the success of monotherapies based on blockade of programmed cell death 1 (PD-1) in human melanoma, most patients do not experience durable clinical benefit. Pre-existing T-cell infiltration and/or the presence of PD-L1 in tumours may be used as indicators of clinical response; however, blood-based profiling to understand the mechanisms of PD-1 blockade has not been widely explored. Here we use immune profiling of peripheral blood from patients with stage IV melanoma before and after treatment with the PD-1-targeting antibody pembrolizumab and identify pharmacodynamic changes in circulating exhausted-phenotype CD8 T cells (Tex cells). Most of the patients demonstrated an immunological response to pembrolizumab. Clinical failure in many patients was not solely due to an inability to induce immune reinvigoration, but rather resulted from an imbalance between T-cell reinvigoration and tumour burden. The magnitude of reinvigoration of circulating Tex cells determined in relation to pretreatment tumour burden correlated with clinical response. By focused profiling of a mechanistically relevant circulating T-cell subpopulation calibrated to pretreatment disease burden, we identify a clinically accessible potential on-treatment predictor of response to PD-1 blockade.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma/drug therapy , Melanoma/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Tumor Burden/immunology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Female , Humans , Ki-67 Antigen/immunology , Ki-67 Antigen/metabolism , Male , Melanoma/blood supply , Melanoma/pathology , Neoplasm Staging , Phenotype , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL