Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Semin Cancer Biol ; 84: 170-183, 2022 09.
Article in English | MEDLINE | ID: mdl-34699973

ABSTRACT

Genetics is an integral part of the clinical diagnostics of lymphomas that improves disease subclassification and patient risk-stratification. With the introduction of high-throughput sequencing technologies, a rapid, in-depth portrayal of the genomic landscape in major lymphoma entities was achieved. Whilst a few lymphoma entities were characterized by a predominant gene mutation (e.g. Waldenström's macroglobulinemia and hairy cell leukemia), the vast majority demonstrated a very diverse genetic landscape with a high number of recurrent gene mutations (e.g. chronic lymphocytic leukemia and diffuse large B cell lymphoma), indeed reflecting the great clinical heterogeneity among lymphomas. These studies have allowed better understanding of the ontogeny and evolution of different lymphomas, while also identifying new genetic markers that can complement lymphoma diagnostics and improve prognostication. However, despite these efforts, there is still a limited number of gene mutations with predictive impact that can guide treatment selection. In this review, we will highlight clinically relevant diagnostic, prognostic and predictive markers in lymphomas that are used today in routine diagnostics. We will also discuss how comprehensive genomic characterization using broad sequencing panels, allowing for the simultaneous detection of different types of genetic aberrations, may aid future development of precision diagnostics in lymphomas. This may in turn pave the way for the implementation of tailored precision therapy strategies at the individual patient level.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Prognosis
2.
Blood ; 137(10): 1365-1376, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32992344

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL.


Subject(s)
Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Gene Frequency , Gene Rearrangement , Humans , Somatic Hypermutation, Immunoglobulin
3.
Genes Chromosomes Cancer ; 61(1): 27-36, 2022 01.
Article in English | MEDLINE | ID: mdl-34647650

ABSTRACT

Formalin-fixed, paraffin-embedded (FFPE) specimens are an underutilized resource in medical research, particularly in the setting of transcriptome sequencing, as RNA from these samples is often degraded. We took advantage of an exome capture-based RNA-sequencing protocol to explore global gene expression in paired fresh-frozen (FF) and FFPE samples from 16 diffuse large B-cell lymphoma (DLBCL) patients. While FFPE samples generated fewer mapped reads compared to their FF counterparts, these reads captured the same library complexity and had a similar number of genes expressed on average. Furthermore, gene expression demonstrated a high correlation when comparing housekeeping genes only or across the entire transcriptome (r = 0.99 for both comparisons). Differences in gene expression were primarily seen in lowly expressed genes and genes with small or large coding sequences. Using cell-of-origin classifiers and clinically relevant gene expression signatures for DLBCL, FF, and FFPE samples from the same biopsy paired nearly perfectly in clustering analysis. This was further confirmed in a validation cohort of 50 FFPE DLBCL samples. In summary, we found the biological differences between tumors to be far greater than artifacts created as a result of degraded RNA. We conclude that exome capture transcriptome sequencing data from archival samples can confidently be used for cell-of-origin classification of DLBCL samples.


Subject(s)
Exome/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Transcriptome , Cluster Analysis , Formaldehyde , Gene Expression Profiling , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Paraffin Embedding , RNA, Neoplasm/genetics , RNA, Neoplasm/isolation & purification , Sequence Analysis, RNA , Tissue Fixation
4.
Haematologica ; 106(1): 87-97, 2021 01 01.
Article in English | MEDLINE | ID: mdl-31974198

ABSTRACT

Complex karyotype (CK) identified by chromosome-banding analysis (CBA) has shown prognostic value in chronic lymphocytic leukemia (CLL). Genomic arrays offer high-resolution genome-wide detection of copy-number alterations (CNAs) and could therefore be well equipped to detect the presence of a CK. Current knowledge on genomic arrays in CLL is based on outcomes of single center studies, in which different cutoffs for CNA calling were used. To further determine the clinical utility of genomic arrays for CNA assessment in CLL diagnostics, we retrospectively analyzed 2293 arrays from 13 diagnostic laboratories according to established standards. CNAs were found outside regions captured by CLL FISH probes in 34% of patients, and several of them including gains of 8q, deletions of 9p and 18p (p<0.01) were linked to poor outcome after correction for multiple testing. Patients (n=972) could be divided in three distinct prognostic subgroups based on the number of CNAs. Only high genomic complexity (high-GC), defined as ≥5 CNAs emerged as an independent adverse prognosticator on multivariable analysis for time to first treatment (Hazard ratio: 2.15, 95% CI: 1.36-3.41; p=0.001) and overall survival (Hazard ratio: 2.54, 95% CI: 1.54-4.17; p<0.001; n=528). Lowering the size cutoff to 1 Mb in 647 patients did not significantly improve risk assessment. Genomic arrays detected more chromosomal abnormalities and performed at least as well in terms of risk stratification compared to simultaneous chromosome banding analysis as determined in 122 patients. Our findings highlight genomic array as an accurate tool for CLL risk stratification.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Chromosome Aberrations , Genome, Human , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Retrospective Studies
5.
Acta Oncol ; 60(4): 531-538, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33579170

ABSTRACT

BACKGROUND: Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2, as well as Indoleamine 2,3-deoxygenase (IDO1) can be expressed both by tumor and microenvironmental cells and are crucial for tumor immune escape. We aimed to evaluate the role of PD-1, its ligands and IDO1 in a cohort of patients with primary diffuse large B-cell lymphoma of the CNS (PCNSL). MATERIAL AND METHODS: Tissue microarrays (TMAs) were constructed in 45 PCNSL cases. RNA extraction from whole tissue sections and RNA sequencing were successfully performed in 33 cases. Immunohistochemical stainings for PD-1, PD-L1/paired box protein 5 (PAX-5), PD-L2/PAX-5 and IDO1, and Epstein-Barr virus encoding RNA (EBER) in situ hybridization were analyzed. RESULTS: High proportions of PD-L1 and PD-L2 positive tumor cells were observed in 11% and 9% of cases, respectively. High proportions of PD-L1 and PD-L2 positive leukocytes were observed in 55% and 51% of cases, respectively. RNA sequencing revealed that gene expression of IDO1 was high in patients with high proportion of PD-L1 positive leukocytes (p = .01). Protein expression of IDO1 in leukocytes was detected in 14/45 cases, in 79% of these cases a high proportion of PD-L1 positive leukocytes was observed. Gene expression of IDO1 was high in EBER-positive cases (p = .0009) and protein expression of IDO1 was detected in five of six EBER-positive cases. CONCLUSION: Our study shows a significant association between gene and protein expression of IDO1 and protein expression of PD-L1 in the tumor microenvironment of PCNSL, possibly of importance for prediction of response to immunotherapies.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , B7-H1 Antigen/genetics , Herpesvirus 4, Human , Humans , Lymphocytes, Tumor-Infiltrating , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Tumor Microenvironment
6.
Br J Haematol ; 191(3): 426-432, 2020 11.
Article in English | MEDLINE | ID: mdl-32779190

ABSTRACT

Bendamustine + rituximab (BR) is the current first-line standard-of-care for chronic lymphocytic leukaemia (CLL) in fit patients aged 66-70 years, whereas chlorambucil + CD20 antibody is recommended in older patients with co-morbidities. This retrospective real-world study investigated whether risk-adapted BR was safe and effective in elderly patients. All 141 CLL patients in the Stockholm region (diagnosed from 2007 to 2016, identified from regional registries) who had received BR as first (n = 84) or later line (n = 57) were analysed. Median age was 72 years, 49% had Binet stage C, 40% had Cumulative Illness Rating Scale (CIRS) score ≥ 6, 20% Eastern Cooperative Oncology Group (ECOG) score 2. None had del(17p). Only 15% of patients aged ≥80 years received full-dose bendamustine and 65% of them postponed rituximab until cycle 2. Corresponding numbers in patients 73-79 years were 21% and 36% and in <73 years, 63% and 33%. Overall response rate was 83% (first line) and 67% (later line) (P < 0·022) equally distributed between age subsets. ECOG, immunoglobulin heavy chain variable region (IGHV) mutational status and cytogenetics, but not treatment line and age, were significant factors on progression-free survival (PFS) in multivariate analysis. Infections and neutropenia/thrombocytopenia (≥grade 3) were similar across age subgroups. In summary, BR was well tolerated even in patients ≥80 years, with similar efficacy and safety as in less old patients, provided that carefully adapted dosing was applied.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Age Factors , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bendamustine Hydrochloride/administration & dosage , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Prognosis , Retrospective Studies , Rituximab/administration & dosage , Sweden/epidemiology , Treatment Outcome
7.
Am J Hematol ; 95(1): 57-67, 2020 01.
Article in English | MEDLINE | ID: mdl-31659781

ABSTRACT

The tumor cells in diffuse large B-cell lymphomas (DLBCL) are considered to originate from germinal center derived B-cells (GCB) or activated B-cells (ABC). Gene expression profiling (GEP) is preferably used to determine the cell of origin (COO). However, GEP is not widely applied in clinical practice and consequently, several algorithms based on immunohistochemistry (IHC) have been developed. Our aim was to evaluate the concordance of COO assignment between the Lymph2Cx GEP assay and the IHC-based Hans algorithm, to decide which model is the best survival predictor. Both GEP and IHC were performed in 359 homogenously treated Swedish and Danish DLBCL patients, in a retrospective multicenter cohort. The overall concordance between GEP and IHC algorithm was 72%; GEP classified 85% of cases assigned as GCB by IHC, as GCB, while 58% classified as non-GCB by IHC, were categorized as ABC by GEP. There were significant survival differences (overall survival and progression-free survival) if cases were classified by GEP, whereas if cases were categorized by IHC only progression-free survival differed significantly. Importantly, patients assigned as non-GCB/ABC both by IHC and GEP had the worst prognosis, which was also significant in multivariate analyses. Double expression of MYC and BCL2 was more common in ABC cases and was associated with a dismal outcome. In conclusion, to determine COO both by IHC and GEP is the strongest outcome predictor to identify DLBCL patients with the worst outcome.


Subject(s)
B-Lymphocytes/cytology , Immunohistochemistry/methods , Lymphoma, Large B-Cell, Diffuse/mortality , Prognosis , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Denmark , Gene Expression Profiling , Germinal Center/cytology , Humans , Lymphocyte Activation , Lymphoma, Large B-Cell, Diffuse/diagnosis , Middle Aged , Retrospective Studies , Survival Analysis , Sweden , Young Adult
8.
Semin Cancer Biol ; 51: 1-11, 2018 08.
Article in English | MEDLINE | ID: mdl-29427646

ABSTRACT

Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Prognosis
9.
Int J Cancer ; 144(11): 2695-2706, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30447004

ABSTRACT

Chronic lymphocytic leukemia (CLL) stereotyped subsets #6 and #8 include cases expressing unmutated B cell receptor immunoglobulin (BcR IG) (U-CLL). Subset #6 (IGHV1-69/IGKV3-20) is less aggressive compared to subset #8 (IGHV4-39/IGKV1(D)-39) which has the highest risk for Richter's transformation among all CLL. The underlying reasons for this divergent clinical behavior are not fully elucidated. To gain insight into this issue, here we focused on epigenomic signatures and their links with gene expression, particularly investigating genome-wide DNA methylation profiles in subsets #6 and #8 as well as other U-CLL cases not expressing stereotyped BcR IG. We found that subset #8 showed a distinctive DNA methylation profile compared to all other U-CLL cases, including subset #6. Integrated analysis of DNA methylation and gene expression revealed significant correlation for several genes, particularly highlighting a relevant role for the TP63 gene which was hypomethylated and overexpressed in subset #8. This observation was validated by quantitative PCR, which also revealed TP63 mRNA overexpression in additional nonsubset U-CLL cases. BcR stimulation had distinct effects on p63 protein expression, particularly leading to induction in subset #8, accompanied by increased CLL cell survival. This pro-survival effect was also supported by siRNA-mediated downregulation of p63 expression resulting in increased apoptosis. In conclusion, we report that DNA methylation profiles may vary even among CLL patients with similar somatic hypermutation status, supporting a compartmentalized approach to dissecting CLL biology. Furthermore, we highlight p63 as a novel prosurvival factor in CLL, thus identifying another piece of the complex puzzle of clinical aggressiveness.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Apoptosis/genetics , Epigenomics/methods , Female , Gene Expression Profiling/methods , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Small Interfering/metabolism , Sequence Analysis, RNA , Transcription Factors/metabolism , Tumor Cells, Cultured , Tumor Suppressor Proteins/metabolism , Up-Regulation
10.
Haematologica ; 104(2): 360-369, 2019 02.
Article in English | MEDLINE | ID: mdl-30262567

ABSTRACT

Chronic lymphocytic leukemia (CLL) patients with differential somatic hypermutation status of the immunoglobulin heavy variable genes, namely mutated or unmutated, display fundamental clinico-biological differences. Considering this, we assessed prognosis separately within mutated (M-CLL) and unmutated (U-CLL) CLL in 3015 patients, hypothesizing that the relative significance of relevant indicators may differ between these two categories. Within Binet A M-CLL patients, besides TP53 abnormalities, trisomy 12 and stereotyped subset #2 membership were equivalently associated with the shortest time-to-first-treatment and a treatment probability at five and ten years after diagnosis of 40% and 55%, respectively; the remaining cases exhibited 5-year and 10-year treatment probability of 12% and 25%, respectively. Within Binet A U-CLL patients, besides TP53 abnormalities, del(11q) and/or SF3B1 mutations were associated with the shortest time-to-first-treatment (5- and 10-year treatment probability: 78% and 98%, respectively); in the remaining cases, males had a significantly worse prognosis than females. In conclusion, the relative weight of indicators that can accurately risk stratify early-stage CLL patients differs depending on the somatic hypermutation status of the immunoglobulin heavy variable genes of each patient. This finding highlights the fact that compartmentalized approaches based on immunogenetic features are necessary to refine and tailor prognostication in CLL.


Subject(s)
Biomarkers, Tumor , Disease Susceptibility , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Aged , Aged, 80 and over , Chromosome Aberrations , Female , Humans , Immunogenetics , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Mutation , Neoplasm Staging , Prognosis , Time-to-Treatment
11.
Blood ; 127(8): 1007-16, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26675346

ABSTRACT

Fludarabine, cyclophosphamide, and rituximab (FCR) is first-line treatment of medically fit chronic lymphocytic leukemia (CLL) patients; however, despite good response rates, many patients eventually relapse. Although recent high-throughput studies have identified novel recurrent genetic lesions in adverse prognostic CLL, the mechanisms leading to relapse after FCR therapy are not completely understood. To gain insight into this issue, we performed whole-exome sequencing of sequential samples from 41 CLL patients who were uniformly treated with FCR but relapsed after a median of 2 years. In addition to mutations with known adverse-prognostic impact (TP53, NOTCH1, ATM, SF3B1, NFKBIE, and BIRC3), a large proportion of cases (19.5%) harbored mutations in RPS15, a gene encoding a component of the 40S ribosomal subunit. Extended screening, totaling 1119 patients, supported a role for RPS15 mutations in aggressive CLL, with one-third of RPS15-mutant cases also carrying TP53 aberrations. In most cases, selection of dominant, relapse-specific subclones was observed over time. However, RPS15 mutations were clonal before treatment and remained stable at relapse. Notably, all RPS15 mutations represented somatic missense variants and resided within a 7 amino-acid, evolutionarily conserved region. We confirmed the recently postulated direct interaction between RPS15 and MDM2/MDMX and transient expression of mutant RPS15 revealed defective regulation of endogenous p53 compared with wild-type RPS15. In summary, we provide novel insights into the heterogeneous genetic landscape of CLL relapsing after FCR treatment and highlight a novel mechanism underlying clinical aggressiveness involving a mutated ribosomal protein, potentially representing an early genetic lesion in CLL pathobiology.


Subject(s)
Drug Resistance, Neoplasm/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation, Missense , Neoplasm Recurrence, Local/genetics , Ribosomal Proteins/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Blotting, Western , Cell Separation , Cyclophosphamide/administration & dosage , DNA Mutational Analysis , Exome , Humans , Immunoprecipitation , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Neoplasm Recurrence, Local/pathology , Rituximab/administration & dosage , Transfection , Tumor Suppressor Protein p53/genetics , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
12.
Blood ; 128(23): 2666-2670, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27670424

ABSTRACT

We recently reported a truncating deletion in the NFKBIE gene, which encodes IκBε, a negative feedback regulator of NF-κB, in clinically aggressive chronic lymphocytic leukemia (CLL). Because preliminary data indicate enrichment of NFKBIE aberrations in other lymphoid malignancies, we screened a large patient cohort (n = 1460) diagnosed with different lymphoid neoplasms. While NFKBIE deletions were infrequent in follicular lymphoma, splenic marginal zone lymphoma, and T-cell acute lymphoblastic leukemia (<2%), slightly higher frequencies were seen in diffuse large B-cell lymphoma, mantle cell lymphoma, and primary central nervous system lymphoma (3% to 4%). In contrast, a remarkably high frequency of NFKBIE aberrations (46/203 cases [22.7%]) was observed in primary mediastinal B-cell lymphoma (PMBL) and Hodgkin lymphoma (3/11 cases [27.3%]). NFKBIE-deleted PMBL patients were more often therapy refractory (P = .022) and displayed inferior outcome compared with wild-type patients (5-year survival, 59% vs 78%; P = .034); however, they appeared to benefit from radiotherapy (P =022) and rituximab-containing regimens (P = .074). NFKBIE aberrations remained an independent factor in multivariate analysis (P = .003) and when restricting the analysis to immunochemotherapy-treated patients (P = .008). Whole-exome sequencing and gene expression profiling verified the importance of NF-κB deregulation in PMBL. In summary, we identify NFKBIE aberrations as a common genetic event across B-cell malignancies and highlight NFKBIE deletions as a novel poor-prognostic marker in PMBL.


Subject(s)
Biomarkers, Tumor/genetics , Gene Deletion , I-kappa B Proteins/genetics , Lymphoma, B-Cell , Mediastinal Neoplasms , Proto-Oncogene Proteins/genetics , Adolescent , Adult , Aged , Disease-Free Survival , Female , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/mortality , Male , Mediastinal Neoplasms/genetics , Mediastinal Neoplasms/mortality , Middle Aged , Survival Rate
13.
Semin Cancer Biol ; 39: 40-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27491692

ABSTRACT

The nuclear factor-κB (NF-κB) pathway is constitutively activated in chronic lymphocytic leukemia (CLL) patients, and hence plays a major role in disease development and evolution. In contrast to many other mature B-cell lymphomas, only a few recurrently mutated genes involved in canonical or non-canonical NF-κB activation have been identified in CLL (i.e. BIRC3, MYD88 and NFKBIE mutations) and often at a low frequency. On the other hand, CLL B cells seem 'addicted' to the tumor microenvironment for their survival and proliferation, which is primarily mediated by interaction through a number of cell surface receptors, e.g. the B-cell receptor (BcR), Toll-like receptors and CD40, that in turn activate downstream NF-κB. The importance of cell-extrinsic triggering for CLL pathophysiology was recently also highlighted by the clinical efficacy of novel drugs targeting microenvironmental interactions through the inhibition of BcR signaling. In other words, CLL can be considered a prototype disease for studying the intricate interplay between external triggers and intrinsic aberrations and their combined impact on disease evolution. In this review, we will discuss the current understanding of mechanisms underlying NF-κB deregulation in CLL, including micro-environmental, genetic and epigenetic events, and summarize data generated in murine models resembling human CLL. Finally, we will also discuss different strategies undertaken to intervene with the NF-κB pathway and its upstream mediators.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , NF-kappa B/metabolism , Animals , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Epigenesis, Genetic , Humans , Leukemia, Experimental/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mice , Molecular Targeted Therapy/methods , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , Signal Transduction , Toll-Like Receptors/metabolism , Tumor Microenvironment
14.
Blood ; 125(5): 856-9, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25634617

ABSTRACT

An unresolved issue in chronic lymphocytic leukemia (CLL) is whether IGHV3-21 gene usage, in general, or the expression of stereotyped B-cell receptor immunoglobulin defining subset #2 (IGHV3-21/IGLV3-21), in particular, determines outcome for IGHV3-21-utilizing cases. We reappraised this issue in 8593 CLL patients of whom 437 (5%) used the IGHV3-21 gene with 254/437 (58%) classified as subset #2. Within subset #2, immunoglobulin heavy variable (IGHV)-mutated cases predominated, whereas non-subset #2/IGHV3-21 was enriched for IGHV-unmutated cases (P = .002). Subset #2 exhibited significantly shorter time-to-first-treatment (TTFT) compared with non-subset #2/IGHV3-21 (22 vs 60 months, P = .001). No such difference was observed between non-subset #2/IGHV3-21 vs the remaining CLL with similar IGHV mutational status. In conclusion, IGHV3-21 CLL should not be axiomatically considered a homogeneous entity with adverse prognosis, given that only subset #2 emerges as uniformly aggressive, contrasting non-subset #2/IGVH3-21 patients whose prognosis depends on IGHV mutational status as the remaining CLL.


Subject(s)
Gene Expression Regulation, Leukemic , Gene Rearrangement, B-Lymphocyte, Heavy Chain/immunology , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Aged , Antineoplastic Agents/therapeutic use , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Female , Genetic Heterogeneity , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Prognosis , Somatic Hypermutation, Immunoglobulin , Survival Analysis , Time-to-Treatment , Treatment Outcome
15.
Haematologica ; 101(8): 959-67, 2016 08.
Article in English | MEDLINE | ID: mdl-27198719

ABSTRACT

We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22-34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s).


Subject(s)
Biomarkers, Tumor , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mutation , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Complementarity Determining Regions/genetics , Cytogenetic Analysis , Female , Gene Frequency , Gene Rearrangement, B-Lymphocyte , Genes, Immunoglobulin , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Joining Region/genetics , Immunoglobulin Variable Region/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Polymorphism, Single Nucleotide , Prognosis
16.
Haematologica ; 100(3): 370-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25480502

ABSTRACT

Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Mutation , Neoplasm Proteins/genetics , Alleles , Gene Expression , Gene Frequency , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Neoplasm Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Prognosis , RNA Splicing Factors , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Ribonucleoprotein, U2 Small Nuclear/genetics , Ribonucleoprotein, U2 Small Nuclear/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Haematologica ; 99(8): 1285-91, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25082786

ABSTRACT

A number of single nucleotide polymorphisms have been associated with disease predisposition in chronic lymphocytic leukemia. A single nucleotide polymorphism in the MDM2 promotor region, MDM2SNP309, was shown to soothe the p53 pathway. In the current study, we aimed to clarify the effect of the MDM2SNP309 on chronic lymphocytic leukemia characteristics and outcome. We performed a meta-analysis of data from 2598 individual patients from 10 different cohorts. Patients' data and genetic analysis for MDM2SNP309 genotype, immunoglobulin heavy chain variable region mutation status and fluorescence in situ hybridization results were collected. There were no differences in overall survival based on the polymorphism (log rank test, stratified by study cohort; P=0.76; GG genotype: cohort-adjusted median overall survival of 151 months; TG: 153 months; TT: 149 months). In a multivariable Cox proportional hazards regression analysis, advanced age, male sex and unmutated immunoglobulin heavy chain variable region genes were associated with inferior survival, but not the MDM2 genotype. The MDM2SNP309 is unlikely to influence disease characteristics and prognosis in chronic lymphocytic leukemia. Studies investigating the impact of individual single nucleotide polymorphisms on prognosis are often controversial. This may be due to selection bias and small sample size. A meta-analysis based on individual patient data provides a reasonable strategy for prognostic factor analyses in the case of small individual studies. Individual patient data-based meta-analysis can, therefore, be a powerful tool to assess genetic risk factors in the absence of large studies.


Subject(s)
Databases, Factual , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Databases, Factual/trends , Female , Humans , Male , Middle Aged , Young Adult
18.
EJHaem ; 5(5): 998-1004, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39415908

ABSTRACT

Background: Chronic lymphocytic leukemia (CLL) is a heterogeneous disease. Whereas some patients have an indolent disease, others experience an aggressive course and early death. Our aim was to investigate if modifiable and non-modifiable medical history and lifestyle factors prior to diagnosis had an impact on the natural course of the disease. Method: In 1154 CLL patients, we assessed if the weight, physical activity, smoking, and alcohol consumption or non-modifiable characteristics including family history of lymphoid malignancy and medical history were associated with time-to-first-treatment (TTFT) and adjusted all results for the CLL-International Prognostic Index (CLL-IPI). Results: TTFT was shorter for patients with high/very high-risk CLL-IPI than those with low/intermediate risk CLL-IPI. In the adjusted analysis we did not find additional impact on TTFT besides CLL-IPI from any environmental characteristics assessed. Conclusions: We found limited impact of environmental factors on the natural course of CLL (measured as the TTFT in treatment naïve patients) providing valuable knowledge, and potential relief, to share with patients at the time of diagnosis.

19.
Leukemia ; 38(6): 1287-1298, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575671

ABSTRACT

The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.


Subject(s)
I-kappa B Proteins , Leukemia, Lymphocytic, Chronic, B-Cell , NF-kappa B , Animals , Humans , Mice , Adenine/analogs & derivatives , Adenine/pharmacology , Cell Movement , Cell Proliferation , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , NF-kappa B/metabolism , Piperidines/pharmacology , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
20.
Leukemia ; 38(11): 2429-2442, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39261602

ABSTRACT

SF3B1 mutations are recurrent in chronic lymphocytic leukemia (CLL), particularly enriched in clinically aggressive stereotyped subset #2. To investigate their impact, we conducted RNA-sequencing of 18 SF3B1MUT and 17 SF3B1WT subset #2 cases and identified 80 significant alternative splicing events (ASEs). Notable ASEs concerned exon inclusion in the non-canonical BAF (ncBAF) chromatin remodeling complex subunit, BRD9, and splice variants in eight additional ncBAF complex interactors. Long-read RNA-sequencing confirmed the presence of splice variants, and extended analysis of 139 CLL cases corroborated their association with SF3B1 mutations. Overexpression of SF3B1K700E induced exon inclusion in BRD9, resulting in a novel splice isoform with an alternative C-terminus. Protein interactome analysis of the BRD9 splice isoform revealed augmented ncBAF complex interaction, while exhibiting decreased binding of auxiliary proteins, including SPEN, BRCA2, and CHD9. Additionally, integrative multi-omics analysis identified a ncBAF complex-bound gene quartet on chromosome 1 with higher expression levels and more accessible chromatin in SF3B1MUT CLL. Finally, Cancer Dependency Map analysis and BRD9 inhibition displayed BRD9 dependency and sensitivity in cell lines and primary CLL cells. In conclusion, spliceosome dysregulation caused by SF3B1 mutations leads to multiple ASEs and an altered ncBAF complex interactome, highlighting a novel pathobiological mechanism in SF3B1MUT CLL.


Subject(s)
Chromatin Assembly and Disassembly , Leukemia, Lymphocytic, Chronic, B-Cell , Mutation , Phosphoproteins , RNA Splicing Factors , Spliceosomes , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Alternative Splicing , Bromodomain Containing Proteins
SELECTION OF CITATIONS
SEARCH DETAIL