Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biol Reprod ; 104(2): 387-398, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33112382

ABSTRACT

Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, hypoxia inducible factor 1 alpha (HIF1A). Here, we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIF1A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metformin, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, whereas adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs.


Subject(s)
Endothelin-2/metabolism , Granulosa Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Luteal Cells/metabolism , Sirtuin 1/metabolism , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Endothelin-2/genetics , Epigenesis, Genetic , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Granulosa Cells/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Luteal Cells/drug effects , Oxygen , RNA, Small Interfering , Resveratrol/pharmacology , Sirtuin 1/genetics
2.
Reprod Biol ; 20(3): 273-281, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32741720

ABSTRACT

Sirtuin-1 (SIRT1), a NAD+-dependent deacetylase, is present in the ovarian granulosa cells (GCs) of various species. This study examined the regulation of SIRT1 expression in human granulosa-lutein cells (hGLCs). Two different, structurally unrelated SIRT1 activators, SRT2104 and resveratrol, dose- and time-dependently enhanced SIRT1 (∼2- and 1.5-fold increase at 50 µmol/L for mRNA and protein levels, respectively), whereas EX-527, an inhibitor of SIRT1 deacetylase activity, significantly suppressed SIRT1 protein induced by these activators. Transfecting cells with SIRT1 siRNA molecules efficiently silenced SIRT1 (∼70 % decrease in 48 h post-transfection). Furthermore, the stimulatory effects of SRT2104 on SIRT1 expression observed in non-transfected or in scrambled siRNA-transfected cells were diminished with SIRT1 silencing. The findings described above imply that SIRT1 autoregulates its own expression. Interestingly, SRT2104 elevated cAMP accumulation (1.4-fold) in the culture media of hGLCs which was further augmented in the presence of hCG (2.2-fold); these effects were evident after 12 h of incubation. This additive effect of hCG and SRT2104 on cAMP accumulation may explain the incremental outcome observed on SIRT1 expression (∼3-fold increase from basal level and ∼1.6-fold stimulation for each compound alone) with these two compounds. SIRT1 knockdown diminished SIRT1 induced by forskolin, providing additional evidence that cAMP promotes SIRT1. These findings imply that by activating adenylyl cyclase (hCG or forskolin) and inhibiting phosphodiesterases (SIRT1 activators), these two signals converge to produce an incremental, positive feedback loop on SIRT1 expression. Such a mechanism highlights the importance of maintaining high SIRT1 levels in human luteinized GCs.


Subject(s)
Cyclic AMP/metabolism , Granulosa Cells/metabolism , Luteal Cells/metabolism , Sirtuin 1/metabolism , Adult , Carbazoles/pharmacology , Cell Line , Colforsin/pharmacology , Dose-Response Relationship, Drug , Enzyme Activators/pharmacology , Female , Granulosa Cells/drug effects , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Luteal Cells/drug effects , RNA, Small Interfering , Resveratrol/pharmacology , Signal Transduction/drug effects , Sirtuin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL