Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 131(7): 073201, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656843

ABSTRACT

Discrimination of entangled states is an important element of quantum-enhanced metrology. This typically requires low-noise detection technology. Such a challenge can be circumvented by introducing nonlinear readout process. Traditionally, this is realized by reversing the very dynamics that generates the entangled state, which requires a full control over the system evolution. In this Letter, we present nonlinear readout of highly entangled states by employing reinforcement learning to manipulate the spin-mixing dynamics in a spin-1 atomic condensate. The reinforcement learning found results in driving the system toward an unstable fixed point, whereby the (to be sensed) phase perturbation is amplified by the subsequent spin-mixing dynamics. Working with a condensate of 10 900 ^{87}Rb atoms, we achieve a metrological gain of 6.97_{-1.38}^{+1.30} dB beyond the classical precision limit. Our work will open up new possibilities in unlocking the full potential of entanglement caused quantum enhancement in experiments.

2.
Phys Rev Lett ; 126(6): 060401, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33635691

ABSTRACT

An energy gap develops near quantum critical point of quantum phase transition in a finite many-body (MB) system, facilitating the ground state transformation by adiabatic parameter change. In real application scenarios, however, the efficacy for such a protocol is compromised by the need to balance finite system lifetime with adiabaticity, as exemplified in a recent experiment that prepares three-mode balanced Dicke state near deterministically [Y.-Q. Zou et al., Proc. Natl. Acad. Sci. U.S.A. 115, 6381 (2018)PNASA60027-842410.1073/pnas.1715105115]. Instead of tracking the instantaneous ground state as unanimously required for most adiabatic crossing, this work reports a faster sweeping policy taking advantage of excited level dynamics. It is obtained based on deep reinforcement learning (DRL) from a multistep training scheme we develop. In the absence of loss, a fidelity ≥99% between prepared and the target Dicke state is achieved over a small fraction of the adiabatically required time. When loss is included, training is carried out according to an operational benchmark, the interferometric sensitivity of the prepared state instead of fidelity, leading to better sensitivity in about half of the previously reported time. Implemented in a Bose-Einstein condensate of ∼10^{4} ^{87}Rb atoms, the balanced three-mode Dicke state exhibiting an improved number squeezing of 13.02±0.20 dB is observed within 766 ms, highlighting the potential of DRL for quantum dynamics control and quantum state preparation in interacting MB systems.

SELECTION OF CITATIONS
SEARCH DETAIL