Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Chinese Journal of Neuromedicine ; (12): 1144-1150, 2023.
Article in Zh | WPRIM | ID: wpr-1035929

ABSTRACT

Objective:To explore the neural mechanism of language dysfunction in patients with subacute stroke using functional near-infrared spectroscopy (fNIRS).Methods:Sixteen patients with non-fluent aphasia after subacute stroke (aphasia group), 16 patients with non-aphasia after stroke (non-aphasia group), and 16 healthy middle-aged and elderly subjects (control group) were enrolled into our study. The 6-min resting-state data of fNIRS were collected. Four language-related regions, Broca area, Wernicke area, dorso lateral prefrontal cortex (DLPFC), and supplementary motor area (SMA), were selected as regions of interest (ROIs), and the whole brain functional connection strength and functional connection strength in ROIs and between each two ROIs were analyzed by NirSpark software.Results:Compared with the control group (0.53±0.15) and non-aphasia group (0.47±0.12), the aphasia group had significantly decreased whole brain functional connection strength (0.29±0.14, P<0.05). Compared with the control group and non-aphasia group, the aphasia group had significantly decreased functional connection strength in the left Wernicke area, right Wernicke area, left Broca area, left SMA area, right SMA area and left DLPFC area ( P<0.05, FDR). Compared with the control group and non-aphasia group, the aphasia group had significantly decreased functional connection strength in the right Wernicke-left Wernicke area, right Wernicke-right Broca area, right Wernicke-left Broca area, right Wernicke-right DLPFC area, right Wernicke-left DLPFC area, right Wernicke-right SMA area, right Wernicke-left SMA area, left Wernicke-right Broca area, left Wernicke-left Broca area, left Wernicke-right DLPFC area, left Wernicke-left DLPFC, left Wernicke-right SMA area, left Wernicke-left SMA area, right Broca-left Broca area, right Broca-left DLPFC area, right Broca-right SMA area, right Broca-left SMA area, left Broca-right DLPFC area, left Broca-left DLPFC area, left Broca-right SMA area, left Broca-left SMA area, right DLPFC-left DLPFC area, right DLPFC-right SMA area, right DLPFC-left SMA area, left DLPFC-right SMA area, left DLPFC-left SMA area, and right SMA-left SMA area ( P<0.05, FDR). Conclusion:Abnormal functional connectivity strength of the whole brain and language-related key brain areas might be the neural mechanism of language dysfunction in patients with non-fluent aphasia after subacute stroke.

2.
Article in Zh | WPRIM | ID: wpr-503689

ABSTRACT

OBJECTIVE To investigate the effect of new baicalin(BC) metal ions(Co2+,Cu2+, and Ni2+)complexes(BMCs)on ion channels Kv1.4 and Cav3.2. METHODS HEK293 or CHO cells loaded with various ion channels(hERG,Kv1.2,Kv1.3,Kv1.4,Kv1.5,Kv1.6,Kv1.7,Kv1.8,Kir1.1, Kir2.1,KCNQ and Cav3.2)were obtained by stable transfection method. Whole-cell patch-clamp tech?nique was used to record current changes of each ion channel induced by BC and BMC in 10μmoL · L-1. The effect of different concentrations(0.3,1,3,10 and 30μmoL · L-1)of BC-Co and BC-Cu on Kv1.4 and Cav3.2 current was detected by whole-cell patch-clamp technique. RESULTS A model of HEK293 cells or CHO cells that stably expressed various ion channels was obtained. BMCs (BC-Co,BC-Cu and BC-Ni)had some impact on various ion channels,especially on Kv1.4 and Cav3.2. The inhibitory rate induced by BC-Co,BC-Cu and BC-Ni(10 μmol · L-1)was 91%,76% and-10%,respectively,for Kv1.4;and 43%,57%and-14%,respectively,for Cav3.2. IC50 of BC-Co was 1.69 and 0.81μmoL·L-1 for Kv1.4 and Cav3.2. IC50 of BC-Cu was 1.66 and 0.58μmoL · L-1 for Kv1.4 and Cav3.2. CONCLUSION BC-Cu and BC-Co concentration-dependently inhibit Kv1.4 and Cav3.2 ion channels.

SELECTION OF CITATIONS
SEARCH DETAIL