Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34536345

ABSTRACT

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/parasitology , Host-Parasite Interactions/physiology , Parasites/physiology , Proteolysis , Ubiquitins/metabolism , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Genetic Engineering , Humans , Insecta/physiology , Models, Biological , Phenotype , Photoperiod , Phylogeny , Phytoplasma/physiology , Plant Development , Plant Shoots/growth & development , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Reproduction , Nicotiana , Transcription Factors/metabolism , Transcription, Genetic
2.
PLoS Biol ; 22(10): e3002868, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39423240

ABSTRACT

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins can engage in complex interactions to detect pathogens and execute a robust immune response via downstream helper NLRs. However, the biochemical mechanisms of helper NLR activation by upstream sensor NLRs remain poorly understood. Here, we show that the coiled-coil helper NLR NRC2 from Nicotiana benthamiana accumulates in vivo as a homodimer that converts into a higher-order oligomer upon activation by its upstream virus disease resistance protein Rx. The cryo-EM structure of NbNRC2 in its resting state revealed intermolecular interactions that mediate homodimer formation and contribute to immune receptor autoinhibition. These dimerization interfaces have diverged between paralogous NRC proteins to insulate critical network nodes and enable redundant immune pathways, possibly to minimise undesired cross-activation and evade pathogen suppression of immunity. Our results expand the molecular mechanisms of NLR activation pointing to transition from homodimers to higher-order oligomeric resistosomes.

3.
Plant Cell ; 35(10): 3662-3685, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37467141

ABSTRACT

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors generally exhibit hallmarks of rapid evolution, even at the intraspecific level. We used iterative sequence similarity searches coupled with phylogenetic analyses to reconstruct the evolutionary history of HOPZ-ACTIVATED RESISTANCE1 (ZAR1), an atypically conserved NLR that traces its origin to early flowering plant lineages ∼220 to 150 million yrs ago (Jurassic period). We discovered 120 ZAR1 orthologs in 88 species, including the monocot Colocasia esculenta, the magnoliid Cinnamomum micranthum, and most eudicots, notably the Ranunculales species Aquilegia coerulea, which is outside the core eudicots. Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition and cell death activation. We functionally reconstructed the cell death activity of ZAR1 and its partner receptor-like cytoplasmic kinase (RLCK) from distantly related plant species, experimentally validating the hypothesis that ZAR1 evolved to partner with RLCKs early in its evolution. In addition, ZAR1 acquired novel molecular features. In cassava (Manihot esculenta) and cotton (Gossypium spp.), ZAR1 carries a C-terminal thioredoxin-like domain, and in several taxa, ZAR1 duplicated into 2 paralog families, which underwent distinct evolutionary paths. ZAR1 stands out among angiosperm NLR genes for having experienced relatively limited duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 also gave rise to noncanonical NLRs with integrated domains and degenerated molecular features.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Phylogeny , Protein Domains , Plants/metabolism , Plant Immunity/genetics , Carrier Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 120(49): e2310664120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38039272

ABSTRACT

In eukaryotes, targeted protein degradation (TPD) typically depends on a series of interactions among ubiquitin ligases that transfer ubiquitin molecules to substrates leading to degradation by the 26S proteasome. We previously identified that the bacterial effector protein SAP05 mediates ubiquitin-independent TPD. SAP05 forms a ternary complex via interactions with the von Willebrand Factor Type A (vWA) domain of the proteasomal ubiquitin receptor Rpn10 and the zinc-finger (ZnF) domains of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) and GATA BINDING FACTOR (GATA) transcription factors (TFs). This leads to direct TPD of the TFs by the 26S proteasome. Here, we report the crystal structures of the SAP05-Rpn10vWA complex at 2.17 Å resolution and of the SAP05-SPL5ZnF complex at 2.20 Å resolution. Structural analyses revealed that SAP05 displays a remarkable bimodular architecture with two distinct nonoverlapping surfaces, a "loop surface" with three protruding loops that form electrostatic interactions with ZnF, and a "sheet surface" featuring two ß-sheets, loops, and α-helices that establish polar interactions with vWA. SAP05 binding to ZnF TFs involves single amino acids responsible for multiple contacts, while SAP05 binding to vWA is more stable due to the necessity of multiple mutations to break the interaction. In addition, positioning of the SAP05 complex on the 26S proteasome points to a mechanism of protein degradation. Collectively, our findings demonstrate how a small bacterial bimodular protein can bypass the canonical ubiquitin-proteasome proteolysis pathway, enabling ubiquitin-independent TPD in eukaryotic cells. This knowledge holds significant potential for the creation of TPD technologies.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Carrier Proteins/metabolism , Protein Binding , Eukaryota/metabolism
5.
PLoS Pathog ; 18(10): e1010918, 2022 10.
Article in English | MEDLINE | ID: mdl-36302035

ABSTRACT

In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.


Subject(s)
Mirabilis , Phytophthora infestans , Solanum tuberosum , Plant Diseases , Phytophthora infestans/genetics , Host Specificity
6.
PLoS Biol ; 19(8): e3001136, 2021 08.
Article in English | MEDLINE | ID: mdl-34424903

ABSTRACT

In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.


Subject(s)
Biological Evolution , Helminth Proteins/physiology , Host-Pathogen Interactions/physiology , NLR Proteins/physiology , Solanaceae/microbiology , Cell Death , Disease Resistance
7.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34417294

ABSTRACT

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet, the subcellular localization of NLRs pre- and postactivation during pathogen infection remains poorly understood. Here, we show that NRC4, from the "NRC" solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extrahaustorial membrane (EHM), presumably to mediate response to perihaustorial effectors that are recognized by NRC4-dependent sensor NLRs. However, not all NLRs accumulate at the EHM, as the closely related helper NRC2 and the distantly related ZAR1 did not accumulate at the EHM. NRC4 required an intact N-terminal coiled-coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that postactivation, NRC4 may undergo a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection, however, NRC4 forms puncta mainly at the EHM and, to a lesser extent, at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Subject(s)
Host-Pathogen Interactions , NLR Proteins/metabolism , Nicotiana/metabolism , Phytophthora infestans/physiology , Plant Diseases/immunology , Plant Immunity/immunology , Plant Proteins/metabolism , Cell Membrane/metabolism , Disease Resistance/immunology , NLR Proteins/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Receptors, Immunologic/metabolism , Nicotiana/immunology , Nicotiana/parasitology
8.
J Biol Chem ; 296: 100371, 2021.
Article in English | MEDLINE | ID: mdl-33548226

ABSTRACT

Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.


Subject(s)
Ascomycota/genetics , Disease Resistance/immunology , Alleles , Ascomycota/metabolism , Ascomycota/pathogenicity , Disease Resistance/genetics , Host-Pathogen Interactions/immunology , Magnaporthe/immunology , Models, Molecular , NLR Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism
9.
PLoS Biol ; 17(7): e3000373, 2019 07.
Article in English | MEDLINE | ID: mdl-31329577

ABSTRACT

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy , Plant Proteins/metabolism , Plants/metabolism , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/genetics , Immunoprecipitation/methods , Mass Spectrometry/methods , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/classification , Plants/genetics , Plants, Genetically Modified , Protein Binding , Protein Conformation, beta-Strand , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteomics/methods , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Nicotiana/genetics , Nicotiana/metabolism
10.
PLoS Genet ; 14(4): e1007310, 2018 04.
Article in English | MEDLINE | ID: mdl-29641602

ABSTRACT

Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.


Subject(s)
Crops, Agricultural/parasitology , Genes, Essential , Genes, Helminth , Glutathione Synthase/genetics , Tylenchida/genetics , Animals , Gene Expression Regulation, Enzymologic , Host-Parasite Interactions
11.
Microbiology (Reading) ; 166(10): 981-987, 2020 10.
Article in English | MEDLINE | ID: mdl-32894213

ABSTRACT

The intracellular pathogen S. Typhimurium is a leading cause of foodborne illness across the world and is known to rely on a range of virulence factors to colonize the human host and cause disease. The gene coding for one such factor, stm3169, was determined to be upregulated upon macrophage entry and its disruption reduces survival in the macrophage. In this study we characterize the STM3169 protein, which forms the substrate binding protein (SBP) of an uncharacterized tripartite ATP-independent periplasmic (TRAP) transporter. Genome context analysis of the genes encoding this system in related bacteria suggests a function in sugar acid transport. We demonstrate that purified STM3169 binds d-glucuronic acid with high affinity and specificity. S. Typhimurium LT2 can use this sugar acid as a sole carbon source and the genes for a probable catabolic pathway are present in the genome. As this gene was previously implicated in macrophage survival, it suggests a role for d-glucuronate as an important carbon source for S. Typhimurium in this environment.


Subject(s)
Hexuronic Acids/metabolism , Membrane Transport Proteins/metabolism , Salmonella typhimurium/metabolism , Virulence Factors/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Glucuronic Acid/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Substrate Specificity , Virulence Factors/chemistry , Virulence Factors/genetics
12.
Mol Plant Microbe Interact ; 31(1): 34-45, 2018 01.
Article in English | MEDLINE | ID: mdl-29144205

ABSTRACT

A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


Subject(s)
Host-Pathogen Interactions , NLR Proteins/metabolism , Plants/metabolism , Plants/microbiology , Amino Acid Sequence , Biological Evolution , Genetic Variation , NLR Proteins/chemistry , NLR Proteins/genetics , Plants/immunology , Selection, Genetic
13.
J Biol Chem ; 291(38): 20270-20282, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27458016

ABSTRACT

Filamentous plant pathogens deliver effector proteins to host cells to promote infection. The Phytophthora infestans RXLR-type effector PexRD54 binds potato ATG8 via its ATG8 family-interacting motif (AIM) and perturbs host-selective autophagy. However, the structural basis of this interaction remains unknown. Here, we define the crystal structure of PexRD54, which includes a modular architecture, including five tandem repeat domains, with the AIM sequence presented at the disordered C terminus. To determine the interface between PexRD54 and ATG8, we solved the crystal structure of potato ATG8CL in complex with a peptide comprising the effector's AIM sequence, and we established a model of the full-length PexRD54-ATG8CL complex using small angle x-ray scattering. Structure-informed deletion of the PexRD54 tandem domains reveals retention of ATG8CL binding in vitro and in planta This study offers new insights into structure/function relationships of oomycete RXLR effectors and how these proteins engage with host cell targets to promote disease.


Subject(s)
Autophagy-Related Protein 8 Family , Phytophthora infestans , Plant Diseases , Plant Proteins , Solanum tuberosum , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Crystallography, X-Ray , Phytophthora infestans/chemistry , Phytophthora infestans/genetics , Phytophthora infestans/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , Protein Structure, Quaternary , Solanum tuberosum/chemistry , Solanum tuberosum/genetics , Solanum tuberosum/metabolism
14.
Biochem Soc Trans ; 43(5): 1011-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26517916

ABSTRACT

ATP-binding cassette (ABC) transporters, although being ubiquitous in biology, often feature a subunit that is limited primarily to bacteria and archaea. This subunit, the substrate-binding protein (SBP), is a key determinant of the substrate specificity and high affinity of ABC uptake systems in these organisms. Most prokaryotes have many SBP-dependent ABC transporters that recognize a broad range of ligands from metal ions to amino acids, sugars and peptides. Herein, we review the structure and function of a number of more unusual SBPs, including an ABC transporter involved in the transport of rare furanose forms of sugars and an SBP that has evolved to specifically recognize the bacterial cell wall-derived murein tripeptide (Mtp). Both these examples illustrate that subtle changes in binding-site architecture, including changes in side chains not directly involved in ligand co-ordination, can result in significant alteration of substrate range in novel and unpredictable ways.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Binding Sites , Biological Evolution , Models, Molecular , Monosaccharides/chemistry , Monosaccharides/metabolism , Protein Binding , Protein Structure, Tertiary
15.
Biochem J ; 448(3): 329-41, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22970852

ABSTRACT

The murein peptide amidase MpaA is a cytoplasmic enzyme that processes peptides derived from the turnover of murein. We have purified the enzyme from Escherichia coli and demonstrated that it efficiently hydrolyses the γ-D-glutamyl-diaminopimelic acid bond in the murein tripeptide (L-Ala-γ-D-Glu-meso-Dap), with Km and kcat values of 0.41±0.05 mM and 38.3±10 s-1. However, it is unable to act on the murein tetrapeptide (L-Ala-γ-D-Glu-meso-Dap-D-Ala). E. coli MpaA is a homodimer containing one bound zinc ion per chain, as judged by mass spectrometric analysis and size-exclusion chromatography. To investigate the structure of MpaA we solved the crystal structure of the orthologous protein from Vibrio harveyi to 2.17 Å (1Å=0.1 nm). Vh_MpaA, which has identical enzymatic and biophysical properties to the E. coli enzyme, has high structural similarity to eukaryotic zinc carboxypeptidases. The structure confirms that MpaA is a dimeric zinc metalloprotein. Comparison of the structure of MpaA with those of other carboxypeptidases reveals additional structure that partially occludes the substrate-binding groove, perhaps explaining the narrower substrate specificity of the enzyme compared with other zinc carboxypeptidases. In γ-proteobacteria mpaA is often located adjacent to mppA which encodes a periplasmic transporter protein previously shown to bind murein tripeptide. We demonstrate that MppA can also bind murein tetrapeptide with high affinity. The genetic coupling of these genes and their related biochemical functions suggest that MpaA amidase and MppA transporter form part of a catabolic pathway for utilization of murein-derived peptides that operates in γ-proteobacteria in addition to the established murein recycling pathways.


Subject(s)
Carboxypeptidases/chemistry , Carboxypeptidases/physiology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/physiology , Gammaproteobacteria/chemistry , Gammaproteobacteria/physiology , Peptidoglycan/chemistry , Signal Transduction/physiology , Crystallography, X-Ray , Metabolism/physiology , Metalloproteins/chemistry , Metalloproteins/physiology , Peptide Fragments/chemistry , Peptide Fragments/physiology , Peptidoglycan/metabolism , Protein Multimerization , Zinc/chemistry
16.
J Biomol Struct Dyn ; 41(23): 14325-14338, 2023.
Article in English | MEDLINE | ID: mdl-36946192

ABSTRACT

SARS-CoV-2 enters the host cell through the ACE2 receptor and replicates its genome using an RNA-Dependent RNA Polymerase (RDRP). The functional RDRP is released from pro-protein pp1ab by the proteolytic activity of Main protease (Mpro) which is encoded within the viral genome. Due to its vital role in proteolysis of viral polyprotein chains, it has become an attractive potential drug target. We employed a hierarchical virtual screening approach to identify small synthetic protease inhibitors. Statistically optimized molecular shape and color-based features (various functional groups) from co-crystal ligands were used to screen different databases through various scoring schemes. Then, the electrostatic complementarity of screened compounds was matched with the most active molecule to further reduce the hit molecules' size. Finally, five hundred eighty-seven molecules were docked in Mpro catalytic binding site, out of which 29 common best hits were selected based on Glide and FRED scores. Five best-fitting compounds in complex with Mpro were subjected to MD simulations to analyze their structural stability and binding affinities with Mpro using MM/GB(PB)SA models. Modeling results suggest that identified hits can act as the lead compounds for designing better active Mpro inhibitors to enhance the chemical space to combat COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Binding Sites , Catalysis , Ligands , RNA-Dependent RNA Polymerase , Molecular Docking Simulation , Protease Inhibitors/pharmacology
17.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134163

ABSTRACT

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Subject(s)
Disease Resistance , Plant Proteins , Humans , Plant Proteins/metabolism , Disease Resistance/genetics , Plant Immunity/genetics , NLR Proteins/genetics , NLR Proteins/metabolism , Bioengineering
18.
J Biol Chem ; 286(36): 31512-21, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21705338

ABSTRACT

The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2-5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, L-Ala-γ-D-Glu-meso-Dap), which contains a D-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (K(D) ∼ 250 nM). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the D-stereochemistry, which projects the side chain of the D-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Lipoproteins/chemistry , Membrane Transport Proteins/chemistry , Peptidoglycan/chemistry , Bacterial Proteins/metabolism , Biological Transport , Carrier Proteins/metabolism , Crystallography, X-Ray , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , Membrane Transport Proteins/metabolism , Oligopeptides , Peptidoglycan/metabolism , Protein Conformation , Stereoisomerism
19.
Elife ; 82019 11 27.
Article in English | MEDLINE | ID: mdl-31774397

ABSTRACT

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.


Subject(s)
NLR Proteins/chemistry , NLR Proteins/immunology , Plant Immunity/immunology , Receptors, Immunologic/immunology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins , Carrier Proteins , Cell Death , Gene Knockout Techniques , Models, Molecular , NLR Proteins/classification , NLR Proteins/genetics , Phylogeny , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Sequence Analysis, Protein , Nicotiana/genetics , Nicotiana/immunology
20.
Nat Plants ; 4(9): 734, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30127412

ABSTRACT

In the version of this Article originally published, in Fig. 1b the single-letter code for the amino acid polymorphism at position 46 in the schematic of the AVR-PikE variant was incorrectly given as 'H'. The correct amino acid is 'N'. This has now been amended in all versions of the Article.

SELECTION OF CITATIONS
SEARCH DETAIL