Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nature ; 631(8019): 73-79, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867044

ABSTRACT

Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays1-4. Despite the great success achieved in green PeLEDs with lead bromide perovskites5, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap6. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.7% at 638 nm, enabled by incorporating a double-end anchored ligand molecule into pure-iodine perovskites. We demonstrate that a key function of the organic intercalating cation is to stabilize the lead iodine octahedron through coordination with exposed lead ions and enhanced hydrogen bonding with iodine. The molecule synergistically facilitates spectral modulation, promotes charge transfer between perovskite quantum wells and reduces iodine migration under electrical bias. We realize continuously tunable emission wavelengths for iodine-based perovskite films with suppressed energy loss due to the decrease in bond energy of lead iodine in ionic perovskites as the bandgap increases. Importantly, the resultant devices show outstanding spectral stability and a half-lifetime of more than 7,600 min at an initial luminance of 100 cd m-2.


Subject(s)
Calcium Compounds , Lead , Oxides , Titanium , Titanium/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Lead/chemistry , Color , Iodine/chemistry , Light , Ligands
3.
J Am Chem Soc ; 145(2): 1378-1388, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36594717

ABSTRACT

Structural non-centrosymmetry in semiconducting organic-inorganic hybrid halide perovskites can introduce functionalities like anomalous photovoltaics and nonlinear optical properties. Here we introduce a design principle to prepare Pb- and Bi-based two- and one-dimensional hybrid perovskites with polar non-centrosymmetric space groups. The design principle relies on creating dissimilar hydrogen and halogen bonding non-covalent interactions at the organic-inorganic interface. For example, in organic cations like I-(CH2)3-NH2(CH3)+ (MIPA), -CH3 is substituted by -CH2I at one end, and -NH3+ is substituted by -NH2(CH3)+ at the other end. These substitutions of two -H atoms by -I and -CH3 reduce the rotational symmetry of MIPA at both ends, compared to an unsubstituted cation, for example, H3C-(CH2)3-NH3+. Consequently, the dissimilar hydrogen-iodine and iodine-iodine interactions at the organic-inorganic interface of (MIPA)2PbI4 2D perovskites break the local inversion symmetries of Pb-I octahedra. Owing to this non-centrosymmetry, (MIPA)2PbI4 displays visible to infrared tunable nonlinear optical properties with second and third harmonic generation susceptibility values of 5.73 pm V-1 and 3.45 × 10-18 m2 V-2, respectively. Also, the single crystal shows photocurrent on shining visible light at no external bias, exhibiting anomalous photovoltaic effect arising from the structural asymmetry. The design strategy was extended to synthesize four new non-centrosymmetric hybrid perovskite compounds. Among them, one-dimensional (H3N-(CH2)3-NH(CH3)2)BiI5 shows a second harmonic generation susceptibility of 7.3 pm V-1 and a high anomalous photovoltaic open-circuit voltage of 22.6 V.

4.
Angew Chem Int Ed Engl ; 60(33): 18265-18271, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34085741

ABSTRACT

Optoelectronically active hybrid lead halide perovskites dissociate in water. To prevent this dissociation, here, we introduce long-range intermolecular cation-π interactions between A-site cations of hybrid perovskites. An aromatic diamine like 4,4'-trimethylenedipyridine, if protonated, can show a long-range cation-π stacking, and therefore, serves as our A-site cation. Consequently, 4,4'-trimethylenedipyridinium lead bromide [(4,4'-TMDP)Pb2 Br6 ], a one-dimensional hybrid perovskite, remains completely stable after continuous water treatment for six months. Mechanistic insights about the cation-π interactions are obtained by single-crystal X-ray diffraction and nuclear magnetic resonance spectroscopy. The concept of long-range cation-π interaction is further extended to another A-site cation 4,4'-ethylenedipyridinium ion (4,4'-EDP), forming water-stable (4,4'-EDP)Pb2 Br6 perovskite. These water-stable perovskites are then used to fabricate white light-emitting diode and for light up-conversion through tunable third-harmonic generation. Note that the achieved water stability is the intrinsic stability of perovskite composition, unlike the prior approach of encapsulating the unstable perovskite material (or device) by water-resistant materials. The introduced cation-π interactions can be a breakthrough strategy in designing many more compositions of water-stable low-dimensional hybrid perovskites.

5.
Chem Commun (Camb) ; 58(55): 7650-7653, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35723535

ABSTRACT

The introduction of chirality in layered hybrid perovskites breaks the symmetry of their inorganic sub-lattices. Consequently, they show intriguing linear and non-linear optical properties. Here we explore the effect of chirality on the excitonic photoluminescence of chiral (R- and S-α-MBA)2PbI4 (MBA: methylbenzylammonium) at cryogenic temperatures. The induced chirality splits the excitonic emissions below 150 K. Additionally, (R- and S-α-MBA)2PbI4 show wavelength-tunable second harmonic generation (SHG) that depends strongly on the polarization angle of the incident light.

SELECTION OF CITATIONS
SEARCH DETAIL