Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 842
Filter
Add more filters

Publication year range
1.
Am J Physiol Cell Physiol ; 327(1): C11-C33, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38708523

ABSTRACT

In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.


Subject(s)
Liver Neoplasms , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Animals , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/therapeutic use , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/immunology , Cholangiocarcinoma/pathology , Epigenesis, Genetic/drug effects
2.
Hepatology ; 78(3): 878-895, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36745935

ABSTRACT

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Subject(s)
Liver Diseases, Alcoholic , Animals , Mice , Mice, Inbred C57BL , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Ethanol/adverse effects , Mitochondria/metabolism , Molecular Chaperones/metabolism , Mitochondrial Proteins/metabolism
3.
Bioconjug Chem ; 35(7): 971-980, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958375

ABSTRACT

Conventional serum markers often fail to accurately detect cholestasis accompanying many liver diseases. Although elevation in serum bile acid (BA) levels sensitively reflects impaired hepatobiliary function, other factors altering BA pool size and enterohepatic circulation can affect these levels. To develop fluorescent probes for extracorporeal noninvasive hepatobiliary function assessment by real-time monitoring methods, 1,3-dipolar cycloaddition reactions were used to conjugate near-infrared (NIR) fluorochromes with azide-functionalized BA derivatives (BAD). The resulting compounds (NIRBADs) were chromatographically (FC and PTLC) purified (>95%) and characterized by fluorimetry, 1H NMR, and HRMS using ESI ionization coupled to quadrupole TOF mass analysis. Transport studies using CHO cells stably expressing the BA carrier NTCP were performed by flow cytometry. Extracorporeal fluorescence was detected in anesthetized rats by high-resolution imaging analysis. Three NIRBADs were synthesized by conjugating alkynocyanine 718 with cholic acid (CA) at the COOH group via an ester (NIRBAD-1) or amide (NIRBAD-3) spacer, or at the 3α-position by a triazole link (NIRBAD-2). NIRBADs were efficiently taken up by cells expressing NTCP, which was inhibited by taurocholic acid (TCA). Following i.v. administration of NIRBAD-3 to rats, liver uptake and consequent release of NIR fluorescence could be extracorporeally monitored. This transient organ-specific handling contrasted with the absence of release to the intestine of alkynocyanine 718 and the lack of hepatotropism observed with other probes, such as indocyanine green. NIRBAD-3 administration did not alter serum biomarkers of hepatic and renal toxicity. NIRBADs can serve as probes to evaluate hepatobiliary function by noninvasive extracorporeal methods.


Subject(s)
Bile Acids and Salts , Fluorescent Dyes , Liver , Animals , Bile Acids and Salts/chemistry , Fluorescent Dyes/chemistry , Rats , Liver/metabolism , Liver/diagnostic imaging , CHO Cells , Cricetulus , Liver Function Tests/methods , Male , Spectroscopy, Near-Infrared/methods , Rats, Sprague-Dawley , Fluorescence
4.
Ann Hematol ; 103(1): 175-183, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37796339

ABSTRACT

Currently, analysis of interim PET (iPET) according to the Deauville score (DS) is the most important predictive factor in Hodgkin lymphoma (HL); however, there is room for improvement in its prognostic power. This study aimed to evaluate the prognostic value of quantitative PET analysis (maximum standard uptake value [SUVmax], total metabolic tumor volume [TMTV] and total lesion glicolysis [TLG]) at baseline (PET0) and iPET in a retrospective cohort of newly diagnosed classical HL. For positive iPET (+ iPET), the reduction of quantitative parameters in relation to PET0 (ΔSUVmax, ΔTMTV and ΔTLG) was calculated. Between 2011 and 2017, 234 patients treated with ABVD were analyzed. Median age was 30 years-old, 59% had advanced stage disease, 57% a bulky mass and 25% a + iPET (DS 4-5). At baseline, high TLG was associated with an increased cumulative incidence of failure (CIF) (p = 0.032) while neither SUVmax, TMTV or TLG were associated with overall survival (OS) or progression-free survival (PFS). In multivariate analysis, only iPET was associated with CIF (p < 0.001). Among ΔSUVmax, ΔTMTV and ΔTLG, only a ΔSUVmax ≥ 68.8 was significant for PFS (HR: 0.31, CI95%: 0.11-0.86, p = 0.024). A subset of patients with improved PFS amongst + iPET was identified by the quantitative (ΔSUVmax ≥ 68.8%) analysis. In this real-world Brazilian cohort, with prevalent high-risk patients, quantitative analysis of PET0 did not demonstrate to be prognostic, while a dynamic approach incorporating the ΔSUVmax to + iPET succeeded in refining a subset with better prognosis. These findings warrant validation in larger series and indicate that not all patients with + iPET might need treatment intensification.


Subject(s)
Hodgkin Disease , Humans , Adult , Retrospective Studies , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Fluorodeoxyglucose F18 , Bleomycin , Dacarbazine , Doxorubicin , Vinblastine , Prognosis , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography
5.
Inorg Chem ; 63(21): 9648-9658, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38506446

ABSTRACT

The addition of 2 equiv of the phosphaylide H2C═PPh3 to the dimethyl uranium metallocene Cp*2UMe2 (Cp* = η5-C5Me5) in toluene with gentle heating at 40 °C generates the phosphorano-stabilized bis(carbene) Cp*2U[C(H)PPh3]2 (1) in good yield. Characterization of 1 by X-ray crystallographic analysis reveals two short uranium-carbon bonds, ranging from 2.301(5) to 2.322(5) Å, consistent with the presence of U═C carbene-type bonds. Monitoring the reaction by NMR spectroscopy suggests that it proceeds through the intermediate formation of the methyl carbene complex Cp*2U[C(H)PPh3](Me) (1Int); however, prolonged heating of these solutions leads to the ortho-cyclometalated carbene species Cp*2U{κ2-[C(H)PPh2(C6H4)]} (2) via intramolecular C-H activation. Rapid conversion from 1 to 2 occurs within hours upon heating its toluene solutions to 100 °C. Preliminary reactivity studies of 1 show that it readily reacts with alcohols, such as HODipp (Dipp = 2,6-diisopropylphenyl) and HOC(CF3)3, to give the mixed carbene alkoxide compounds Cp*2U[C(H)PPh3](OR) (R = Dipp (4Dipp), C(CF3)3 (5CF3)). In one case, the reaction of 1 with HODipp in the presence of adventitious water led to the formation of a few crystals of the terminal U(IV) oxo complex, [Ph3PCH3][Cp*2U(O)(ODipp)] (3oxo). The isolation of 1 marks the first instance of an unchelated, heteroatom-stabilized bis(carbene) complex of uranium that also provides an entryway to the synthesis of its monocarbene derivatives through protonolysis.

6.
Pediatr Dermatol ; 41(4): 714-717, 2024.
Article in English | MEDLINE | ID: mdl-38444084

ABSTRACT

PIK3CA-related overgrowth spectrum (PROS) encompasses different clinical entities caused by somatic activating mutations in PIK3CA. Among PROS, CLOVES syndrome represents a severe phenotype with poor survival rate. We present the case of a 4-month-old girl with CLOVES syndrome successfully treated with alpelisib, a PIKC3A inhibitor.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Thiazoles , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Infant , Thiazoles/therapeutic use , Vascular Malformations/genetics , Vascular Malformations/drug therapy , Nephrocalcinosis/genetics , Mutation , Lipoma , Musculoskeletal Abnormalities , Nevus
7.
Sensors (Basel) ; 24(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38339548

ABSTRACT

Low back pain (LBP) is a highly common musculoskeletal condition and the leading cause of work absenteeism. This project aims to develop a medical test to help healthcare professionals decide on and assign physical treatment for patients with nonspecific LBP. The design uses machine learning (ML) models based on the classification of motion capture (MoCap) data obtained from the range of motion (ROM) exercises among healthy and clinically diagnosed patients with LBP from Imbabura-Ecuador. The following seven ML algorithms were tested for evaluation and comparison: logistic regression, decision tree, random forest, support vector machine (SVM), k-nearest neighbor (KNN), multilayer perceptron (MLP), and gradient boosting algorithms. All ML techniques obtained an accuracy above 80%, and three models (SVM, random forest, and MLP) obtained an accuracy of >90%. SVM was found to be the best-performing algorithm. This article aims to improve the applicability of inertial MoCap in healthcare by making use of precise spatiotemporal measurements with a data-driven treatment approach to improve the quality of life of people with chronic LBP.


Subject(s)
Low Back Pain , Organothiophosphates , Wearable Electronic Devices , Humans , Low Back Pain/diagnosis , Quality of Life , Machine Learning , Algorithms , Range of Motion, Articular , Support Vector Machine
8.
Sensors (Basel) ; 24(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339630

ABSTRACT

Low back pain (LBP) is a common issue that negatively affects a person's quality of life and imposes substantial healthcare expenses. In this study, we introduce the (Back-pain Movement) BackMov test, using inertial motion capture (MoCap) to assess lumbar movement changes in LBP patients. The test includes flexion-extension, rotation, and lateralization movements focused on the lumbar spine. To validate its reproducibility, we conducted a test-retest involving 37 healthy volunteers, yielding results to build a minimal detectable change (MDC) graph map that would allow us to see if changes in certain variables of LBP patients are significant in relation to their recovery. Subsequently, we evaluated its applicability by having 30 LBP patients perform the movement's test before and after treatment (15 received deep oscillation therapy; 15 underwent conventional therapy) and compared the outcomes with a specialist's evaluations. The test-retest results demonstrated high reproducibility, especially in variables such as range of motion, flexion and extension ranges, as well as velocities of lumbar movements, which stand as the more important variables that are correlated with LBP disability, thus changes in them may be important for patient recovery. Among the 30 patients, the specialist's evaluations were confirmed using a low-back-specific Short Form (SF)-36 Physical Functioning scale, and agreement was observed, in which all patients improved their well-being after both treatments. The results from the specialist analysis coincided with changes exceeding MDC values in the expected variables. In conclusion, the BackMov test offers sensitive variables for tracking mobility recovery from LBP, enabling objective assessments of improvement. This test has the potential to enhance decision-making and personalized patient monitoring in LBP management.


Subject(s)
Low Back Pain , Humans , Low Back Pain/diagnosis , Low Back Pain/therapy , Motion Capture , Reproducibility of Results , Quality of Life , Biomechanical Phenomena , Range of Motion, Articular
9.
Trop Anim Health Prod ; 56(5): 170, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769239

ABSTRACT

There are no studies regarding the estimation of genetic parameters and genetic trends for reproductive traits and somatic cells in goats. Their knowledge allows optimization of selection schemes. The objective of this study was to estimate genetic parameters and genetic and phenotypic trends for age at first kidding (AFK), kidding interval (KIN) and somatic cell score (SCS). Analyses were conducted within and across seven US goat breeds, namely, Nubian (NU), Alpine (AL), LaMancha (LM), Toggenburg (TO), Saanen (SA), Nigerian Dwarf (ND) and Oberhasli (OB), and a set of all of these breeds (AB). The restricted maximum likelihood methodology and trivariate animal models were used. Genetic and phenotypic trends were estimated using regression models. The average and standard deviation of AFK, KIN and SCS for AB were 573.6 ± 178.5 days, 418.8 ± 125.5 days and 4.67 ± 2.23 Log2, respectively. The heritabilities (h2) and standard errors of AFK, KIN and SCS for AB were 0.28 ± 0.02, 0.04 ± 0.02 and 0.22 ± 0.01, respectively. The h2 ranged from 0.15 (SA) to 0.37 (NU) for AFK, from 0.04 (AB) to 0.10 (AL) for KIN, and from 0.11 (TO) to 0.26 (LM and ND) for SCS. Genetic correlations between AFK and KIN and between AFK and SCS for AB were positive and weak (0.07 and 0.12, respectively) but significant (P < 0.01). Genetic correlations between SCS and KIN were significant (P < 0.01) for all the breeds and ranged from -0.15 (NU) to 0.44 (AL). Genetic correlations between AFK and SCS in the NU and AL breeds were similar (approximately 0.21). A positive genetic trend was found for KIN in the SA breed, which caused an increase in the number of days between consecutive kiddings. The genetic trend of SCS for the NU, AL and ND breeds was negative and decreased annually, which is beneficial for producers. These first results show the intensity and direction of some favorable/unfavorable relationships between AFK or KIN and SCS Log2 in some U.S. goat genetic groups.


Subject(s)
Goats , Reproduction , Animals , Goats/genetics , Female , Breeding , Phenotype , United States , Male , Dairying
10.
J Hepatol ; 79(4): 989-1005, 2023 10.
Article in English | MEDLINE | ID: mdl-37302584

ABSTRACT

BACKGROUND & AIMS: Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS: We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS: Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of ß-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS: HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS: In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Animals , Mice , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Hepatoblastoma/metabolism , Proteomics , Epigenesis, Genetic , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , DNA Methylation , Carcinogenesis/genetics
11.
Eur Respir J ; 61(3)2023 03.
Article in English | MEDLINE | ID: mdl-36517180

ABSTRACT

BACKGROUND: Atherosclerosis is a common comorbidity of obstructive sleep apnoea (OSA) patients, caused by the interaction of dyslipidaemia and systemic inflammation. The OSA pro-inflammatory response is mediated by NLRP3 inflammasome activation, which requires a priming signal mediated by intermittent hypoxia (IH) and an activation signal provided by soluble stimulus present in plasma. Our objectives were to study oxidised low-density lipoprotein (oxLDL) expression in OSA patients with or without early subclinical atherosclerosis (eSA) as well as its contribution to NLRP3 activation and tissue factor (TF) release. METHODS: We analysed oxLDL, key components of the NLRP3 inflammasome cascade and TF in plasma and monocytes from OSA patients and non-apnoeic subjects, with or without eSA as determined by increased carotid intima-media thickness without the appearance of atherosclerotic plaques. The oxLDL contribution to NLRP3 inflammasome activation was assessed using in vitro models. RESULTS: High levels of oxLDL were identified in plasma from OSA patients, particularly in those with eSA, as well as an overexpression of NLRP3 cascade components and TF. Furthermore, in vitro models showed that both oxLDL and plasma from OSA patients with eSA act synergistically with IH as a priming and activation signal of NLRP3 that enhances the inflammatory response, pyroptosis and TF release. CONCLUSIONS: OSA patients with eSA exhibit NLRP3 activation by IH and the presence of oxLDL capable of releasing TF, constituting a pathway for the interaction between dyslipidaemia and systemic inflammation in the development of atherosclerotic lesions.


Subject(s)
Atherosclerosis , Dyslipidemias , Sleep Apnea, Obstructive , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Carotid Intima-Media Thickness , Lipoproteins, LDL/metabolism , Atherosclerosis/complications , Inflammation/metabolism , Sleep Apnea, Obstructive/complications
12.
Hepatology ; 76(5): 1259-1274, 2022 11.
Article in English | MEDLINE | ID: mdl-35395098

ABSTRACT

BACKGROUND AND AIMS: A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly 3α,7α,12α-trihydroxy-5ß-cholestanoic acid (THCA). We aimed to investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration. METHODS AND RESULTS: Among 33 patients with unexplained hypertransaminasemia from 11 hospitals and 13 of their relatives, seven individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by high-performance liquid chromatography-mass spectrometry. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in two patients and three family members. Two additional nonrelated patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In patients with ADAH, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized aminotransferase levels. Incubation of HuH-7 hepatoma cells with THCA, which was efficiently taken up, but not through BA transporters, increased reactive oxygen species production (flow cytometry), endoplasmic reticulum stress biomarkers (GRP78, CHOP, and XBP1-S/XBP1-U ratio), and BAXα expression (reverse transcription followed by quantitative polymerase chain reaction and immunoblot), whereas cell viability was decreased (tetrazolium salt-based cell viability test). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH. CONCLUSIONS: Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a noninvasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.


Subject(s)
Bile Acids and Salts , Ursodeoxycholic Acid , Humans , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use , Acyl-CoA Oxidase/genetics , Reactive Oxygen Species , Transaminases , Tetrazolium Salts , Oxidoreductases
13.
J Chem Phys ; 158(2): 024104, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36641401

ABSTRACT

From coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)] calculations on the water dimer and B97D/CC on the water-circumcoronene complex at a large number of randomly generated conformations, interaction potentials for the physisorption of water on graphene are built, accomplishing almost sub-chemical accuracy. The force fields were constructed by decomposing the interaction into electrostatic and van der Waals contributions, the latter represented through improved Lennard-Jones potentials. Besides, a Chemistry at Harvard Macromolecular Mechanics (CHARMM)-like term was included in the water-water potential to improve the description of hydrogen bonds, and an induction term was added to model the polarization effects in the interaction between water and polyaromatic hydrocarbons (PAHs) or graphene. Two schemes with three and six point charges were considered for the interactions water-water and water-PAH, as Coulomb contributions are zero in the water-graphene system. The proposed fitted potentials reproduce the ab initio data used to build them in the whole range of distances and conformations and provide results for selected points very close to CCSD(T) benchmarks. When applied to the water-graphene system, the obtained results are in excellent agreement with p-CCSD(T), revised symmetry-adapted perturbation theory based on density functional theory monomer properties (DFT-SAPT), and diffusion Monte Carlo reference values. Furthermore, the stability of the various conformers water-PAH and water-graphene, as well as the different trends observed between these systems are rationalized in terms of the modifications of the electrostatic contribution.


Subject(s)
Graphite , Water/chemistry , Molecular Conformation , Hydrogen Bonding , Static Electricity
14.
Proc Natl Acad Sci U S A ; 117(28): 16492-16499, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601222

ABSTRACT

Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.


Subject(s)
Bile Acids and Salts/metabolism , Cholangiocarcinoma/enzymology , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Animals , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/physiopathology , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 9/genetics , PPAR alpha/genetics , PPAR alpha/metabolism
15.
Sensors (Basel) ; 23(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067707

ABSTRACT

The worldwide popularisation of running as a sport and recreational practice has led to a high rate of musculoskeletal injuries, usually caused by a lack of knowledge about the most suitable running technique for each runner. This running technique is determined by a runner's anthropometric body characteristics, dexterity and skill. Therefore, this study aims to develop a motion capture-based running analysis test on a treadmill called KeepRunning to obtain running patterns rapidly, which will aid coaches and clinicians in assessing changes in running technique considering changes in the study variables. Therefore, a review and proposal of the most representative events and variables of analysis in running was conducted to develop the KeepRunning test. Likewise, the minimal detectable change (MDC) in these variables was obtained using test-retest reliability to demonstrate the reproducibility and viability of the test, as well as the use of MDC as a threshold for future assessments. The test-retest consisted of 32 healthy volunteer athletes with a running training routine of at least 15 km per week repeating the test twice. In each test, clusters of markers were placed on the runners' body segments using elastic bands and the volunteers' movements were captured while running on a treadmill. In this study, reproducibility was defined by the intraclass correlation coefficient (ICC) and MDC, obtaining a mean value of ICC = 0.94 ± 0.05 for all variables and MDC = 2.73 ± 1.16° for the angular kinematic variables. The results obtained in the test-retest reveal that the reproducibility of the test was similar or better than that found in the literature. KeepRunning is a running analysis test that provides data from the involved body segments rapidly and easily interpretable. This data allows clinicians and coaches to objectively provide indications for runners to improve their running technique and avoid possible injury. The proposed test can be used in the future with inertial motion capture and other wearable technologies.


Subject(s)
Wearable Electronic Devices , Humans , Reproducibility of Results , Prothrombin Time , Biomechanical Phenomena
16.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003263

ABSTRACT

Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions. A multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after 12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA (miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and 13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative approach might be useful in understanding how exosomes function, their origin, and their potential clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance. Developing an integrated molecular classification should lead to improved diagnostic classification, risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.


Subject(s)
Exosomes , MicroRNAs , Sleep Apnea, Obstructive , Adult , Humans , Exosomes/metabolism , Multiomics , Proteomics , Sleep Apnea, Obstructive/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lipids
17.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768380

ABSTRACT

Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Prognosis , Apoptosis , Cell Proliferation , Cell Line, Tumor
18.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175608

ABSTRACT

Obstructive sleep apnea (OSA) patients are at special risk of suffering atherosclerosis, leading to major cardiovascular diseases. Notably, the transforming growth factor (TGF-ß) plays a crucial role in the development and progression of atherosclerosis. In this context, the central regulator of TGF-ß pathway, SMAD4 (small mother against decapentaplegic homolog 4), has been previously reported to be augmented in OSA patients, which levels were even higher in patients with concomitant cardiometabolic diseases. Here, we analyzed soluble and intracellular SMAD4 levels in plasma and monocytes from OSA patients and non-apneic subjects, with or without early subclinical atherosclerosis (eSA). In addition, we used in vitro and ex vivo models to explore the mechanisms underlying SMAD4 upregulation and release. Our study confirmed elevated sSMAD4 levels in OSA patients and identified that its levels were even higher in those OSA patients with eSA. Moreover, we demonstrated that SMAD4 is overexpressed in OSA monocytes and that intermittent hypoxia contributes to SMAD4 upregulation and release in a process mediated by NLRP3. In conclusion, this study highlights the potential role of sSMAD4 as a biomarker for atherosclerosis risk in OSA patients and provides new insights into the mechanisms underlying its upregulation and release to the extracellular space.


Subject(s)
Atherosclerosis , Sleep Apnea, Obstructive , Humans , Monocytes/metabolism , Atherosclerosis/metabolism , Hypoxia/metabolism , Biomarkers/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism
19.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762552

ABSTRACT

Lung cancer (LC) is the leading cause of cancer deaths, and chronic obstructive pulmonary disease (COPD) can increase LC risk. Metallomics may provide insights into both of these tobacco-related diseases and their shared etiology. We conducted an observational study of 191 human serum samples, including those of healthy controls, LC patients, COPD patients, and patients with both COPD and LC. We found 18 elements (V, Al, As, Mn, Co, Cu, Zn, Cd, Se, W, Mo, Sb, Pb, Tl, Cr, Mg, Ni, and U) in these samples. In addition, we evaluated the elemental profiles of COPD cases of varying severity. The ratios and associations between the elements were also studied as possible signatures of the diseases. COPD severity and LC have a significant impact on the elemental composition of human serum. The severity of COPD was found to reduce the serum concentrations of As, Cd, and Tl and increased the serum concentrations of Mn and Sb compared with healthy control samples, while LC was found to increase Al, As, Mn, and Pb concentrations. This study provides new insights into the effects of LC and COPD on the human serum elemental profile that will pave the way for the potential use of elements as biomarkers for diagnosis and prognosis. It also sheds light on the potential link between the two diseases, i.e., the evolution of COPD to LC.

20.
Semin Liver Dis ; 42(1): 87-103, 2022 02.
Article in English | MEDLINE | ID: mdl-34544160

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis when diagnosed at advanced stages in which curative treatments are no longer applicable. A small group of these patients may still benefit from transarterial chemoembolization. The only therapeutic option for most patients with advanced HCC is systemic pharmacological treatments based on tyrosine kinase inhibitors (TKIs) and immunotherapy. Available drugs only slightly increase survival, as tumor cells possess additive and synergistic mechanisms of pharmacoresistance (MPRs) prior to or enhanced during treatment. Understanding the molecular basis of MPRs is crucial to elucidate the genetic signature underlying HCC resistome. This will permit the selection of biomarkers to predict drug treatment response and identify tumor weaknesses in a personalized and dynamic way. In this article, we have reviewed the role of MPRs in current first-line drugs and the combinations of immunotherapeutic agents with novel TKIs being tested in the treatment of advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Immunologic Factors/therapeutic use , Immunotherapy , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL