Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Neurochem ; 160(4): 469-481, 2022 02.
Article in English | MEDLINE | ID: mdl-34928513

ABSTRACT

Alcohol exposure alters the signaling of the serotoninergic system, which is involved in alcohol consumption, reward, and dependence. In particular, dysregulation of serotonin receptor type 1A (5-HT1AR) is associated with alcohol intake and withdrawal-induced anxiety-like behavior in rodents. However, how ethanol regulates 5-HT1AR activity and cell surface availability remains elusive. Using neuroblastoma 2a cells stably expressing human 5-HT1ARs tagged with hemagglutinin at the N-terminus, we found that prolonged ethanol exposure (18 h) reduced the basal surface levels of 5-HT1ARs in a concentration-dependent manner. This reduction is attributed to both enhanced receptor internalization and attenuated receptor recycling. Moreover, constitutive 5-HT1AR internalization in ethanol naïve cells was blocked by concanavalin A (ConA) but not nystatin, suggesting clathrin-dependent 5-HT1AR internalization. In contrast, constitutive 5-HT1AR internalization in ethanol-treated cells was blocked by nystatin but not by ConA, indicating that constitutive 5-HT1AR internalization switched from a clathrin- to a caveolin-dependent pathway. Dynasore, an inhibitor of dynamin, blocked 5-HT1AR internalization in both vehicle- and ethanol-treated cells. Furthermore, ethanol exposure enhanced the activity of dynamin I via dephosphorylation and reduced myosin Va levels, which may contribute to increased internalization and reduced recycling of 5-HT1ARs, respectively. Our findings suggest that prolonged ethanol exposure not only alters the endocytic trafficking of 5-HT1ARs but also the mechanism by which constitutive 5-HT1AR internalization occurs.


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Cell Line , Clathrin/metabolism , Concanavalin A/pharmacology , Dose-Response Relationship, Drug , Dynamins/metabolism , Endocytosis , Humans , Hydrazones/pharmacology , Nystatin/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , rab GTP-Binding Proteins/metabolism
2.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168988

ABSTRACT

The N6-methyladenosine (m6A) modification is found in thousands of cellular mRNAs and is a critical regulator of gene expression and cellular physiology. m6A dysregulation contributes to several human diseases, and the m6A methyltransferase machinery has emerged as a promising therapeutic target. However, current methods for studying m6A require RNA isolation and do not provide a real-time readout of mRNA methylation in living cells. Here we present a genetically encoded m6A sensor (GEMS) technology, which couples a fluorescent signal with cellular mRNA methylation. GEMS detects changes in m6A caused by pharmacological inhibition of the m6A methyltransferase, giving it potential utility for drug discovery efforts. Additionally, GEMS can be programmed to achieve m6A-dependent delivery of custom protein payloads in cells. Thus, GEMS is a versatile platform for m6A sensing that provides both a simple readout for m6A methylation and a system for m6A-coupled protein expression.

3.
J Med Entomol ; 58(2): 518-527, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33277897

ABSTRACT

Phlebotomine sand flies are worldwide vectors of Leishmania parasites as well as other bacterial and viral pathogens. Due to the variable impact of traditional vector control practices, a more ecologically based approach is needed. The goal of this study was to isolate bacteria from the most attractive substrate to gravid Phlebotomus papatasi Scopoli sand flies and determine the role of bacterial volatiles in the oviposition attractancy of P. papatasi using behavioral assays. We hypothesized that gravid sand flies are attracted to bacterially derived semiochemical cues associated with breeding sites. Bacteria were isolated from a larvae-conditioned rearing medium, previously shown to be highly attractive to sand flies. The isolated bacteria were identified by amplifying and sequencing 16S rDNA gene fragments, and 12 distinct bacterial species were selected for two-choice olfactometer bioassays. The mix of 12 bacterial isolates elicited strong attraction at the lower concentration of 107 cells per ml and significant repellence at a high concentration of 109 cells per ml. Three individual isolates (SSI-2, SSI-9, and SSI-11) were particularly attractive at low doses. In general, we observed dose-related effects, with some bacterial isolates stimulating negative and some positive dose-response curves in sand fly attraction. Our study confirms the important role of saprophytic bacteria, gut bacteria, or both, in guiding the oviposition-site selection behavior of sand flies. Identifying the specific attractive semiochemical cues that they produce could lead to development of an attractive lure for surveillance and control of sand flies.


Subject(s)
Bacteria/isolation & purification , Oviposition , Phlebotomus , Animals , Appetitive Behavior/drug effects , Bacteria/chemistry , Culture Media , Female , Microbiota , Volatile Organic Compounds/pharmacology
4.
J Vector Ecol ; 45(1): 16-24, 2020 06.
Article in English | MEDLINE | ID: mdl-32492278

ABSTRACT

The vertical dimension constitutes an important niche axis along which mosquitoes may adjust their distribution. Here, we evaluated whether the vertical distribution of container-inhabiting Aedes mosquitoes differs along a gradient of anthropogenic land-use intensity within an urban landscape. Using a pulley system, we hung oviposition cups at three heights (ground level, 4.5, and 9 m) and in three habitats: forest, park, and a built environment. We hypothesized that mosquito abundance and diversity would be highest in the least disturbed forest habitat, decrease in the park, and be lowest at the UNC-Greensboro campus. We also expected Aedes albopictus (Skuse) and Ae. triseriatus (Say) to mainly oviposit at ground level and Ae. hendersoni (Cockerell) at canopy height. Aedes albopictus was the most common species (68.8%) collected in all three habitat types and was the only species found in the built environment. In that habitat, Ae. albopictus exhibited a bimodal distribution with the lowest activity at the intermediate height (4.5 m). Aedes triseriatus (28.9%) did not differ in egg abundance between the forest and park habitats but did exhibit diverse vertical habitat use while avoiding the canopy in the park habitat. Aedes hendersoni (2.3%) was the most sylvatic species and oviposited only at ground level. Our results indicate that the vertical distribution of mosquitoes is affected by the type of habitat in which they occur, and that this variation could be driven via local-scale modification of microclimatic factors.


Subject(s)
Aedes/physiology , Animals , Ecology , Ecosystem , Mosquito Vectors , Oviposition/physiology
5.
Cells ; 9(4)2020 04 13.
Article in English | MEDLINE | ID: mdl-32295063

ABSTRACT

In eukaryotes, heterochromatin plays a critical role in organismal development and cell fate acquisition, through regulating gene expression. The evolutionarily conserved lysine-specific demethylases, Lsd1 and Lsd2, remove mono- and dimethylation on histone H3, serving complex roles in gene expression. In the fission yeast Schizosaccharomyces pombe, null mutations of Lsd1 and Lsd2 result in either severe growth defects or inviability, while catalytic inactivation causes minimal defects, indicating that Lsd1 and Lsd2 have essential functions beyond their known demethylase activity. Here, we show that catalytic mutants of Lsd1 or Lsd2 partially assemble functional heterochromatin at centromeres in RNAi-deficient cells, while the C-terminal truncated alleles of Lsd1 or Lsd2 exacerbate heterochromatin formation at all major heterochromatic regions, suggesting that Lsd1 and Lsd2 repress heterochromatic transcripts through mechanisms both dependent on and independent of their catalytic activities. Lsd1 and Lsd2 are also involved in the establishment and maintenance of heterochromatin. At constitutive heterochromatic regions, Lsd1 and Lsd2 regulate one another and cooperate with other histone modifiers, including the class II HDAC Clr3 and the Sirtuin family protein Sir2 for gene silencing, but not with the class I HDAC Clr6. Our findings explore the roles of lysine-specific demethylases in epigenetic gene silencing at heterochromatic regions.


Subject(s)
Heterochromatin/metabolism , Histone Demethylases/metabolism , Schizosaccharomyces/pathogenicity
6.
J Vis Exp ; (145)2019 03 07.
Article in English | MEDLINE | ID: mdl-30907886

ABSTRACT

A genetic screen for mutant alleles that suppress phenotypic defects caused by a mutation is a powerful approach to identify genes that belong to closely related biochemical pathways. Previous methods such as the Synthetic Genetic Array (SGA) analysis, and random mutagenesis techniques using ultraviolet (UV) or chemicals like ethyl methanesulfonate (EMS) or N-ethyl-N- nitrosourea (ENU), have been widely used but are often costly and laborious. Also, these mutagen-based screening methods are frequently associated with severe side effects on the organism, inducing multiple mutations that add to the complexity of isolating the suppressors. Here, we present a simple and effective protocol to identify suppressor mutations in mutants which confer a growth defect in Schizosaccharomyces pombe. The fitness of cells with a growth deficiency in standard rich liquid media or synthetic liquid media can be monitored for recovery using an automated 96-well plate reader over an extended period. Once a cell acquires a suppressor mutation in the culture, its descendants outcompete those of the parental cells. The recovered cells that have a competitive growth advantage over the parental cells can then be isolated and backcrossed with the parental cells. The suppressor mutations are then identified using whole-genome sequencing. Using this approach, we have successfully isolated multiple suppressors that alleviate the severe growth defects caused by loss of Elf1, an AAA+ family ATPase that is important in nuclear mRNA transport and maintenance of genomic stability. There are currently over 400 genes in S. pombe with mutants conferring a growth defect. As many of these genes are uncharacterized, we propose that our method will hasten the identification of novel functional interactions with this user-friendly, high-throughput approach.


Subject(s)
Genes, Suppressor , Genetic Testing , High-Throughput Nucleotide Sequencing/methods , Schizosaccharomyces/genetics , Crosses, Genetic , Mutagenesis/genetics , Mutation/genetics , Phenotype , Quantitative Trait, Heritable , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Whole Genome Sequencing
7.
Genetics ; 209(4): 967-981, 2018 08.
Article in English | MEDLINE | ID: mdl-29844133

ABSTRACT

A healthy individual may carry a detrimental genetic trait that is masked by another genetic mutation. Such suppressive genetic interactions, in which a mutant allele either partially or completely restores the fitness defect of a particular mutant, tend to occur between genes that have a confined functional connection. Here we investigate a self-recovery phenotype in Schizosaccharomyces pombe, mediated by suppressive genetic interactions that can be amplified during cell culture. Cells without Elf1, an AAA+ family ATPase, have severe growth defects initially, but quickly recover growth rates near to those of wild-type strains by acquiring suppressor mutations. elf1Δ cells accumulate RNAs within the nucleus and display effects of genome instability such as sensitivity to DNA damage, increased incidence of lagging chromosomes, and mini-chromosome loss. Notably, the rate of phenotypic recovery was further enhanced in elf1Δ cells when RNase H activities were abolished and significantly reduced upon overexpression of RNase H1, suggesting that loss of Elf1-related genome instability can be resolved by RNase H activities, likely through eliminating the potentially mutagenic DNA-RNA hybrids caused by RNA nuclear accumulation. Using whole genome sequencing, we mapped a few consistent suppressors of elf1Δ including mutated Cue2, Rpl2702, and SPBPJ4664.02, suggesting previously unknown functional connections between Elf1 and these proteins. Our findings describe a mechanism by which cells bearing mutations that cause fitness defects and genome instability may accelerate the fitness recovery of their population through quickly acquiring suppressors. We propose that this mechanism may be universally applicable to all microorganisms in large-population cultures.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Gene Deletion , Mutation , Ribonuclease H/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/growth & development , ATP-Binding Cassette Transporters/metabolism , Cell Nucleus/genetics , Genome, Fungal , Genomic Instability , Phenotype , RNA, Fungal/metabolism , Ribonuclease H/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL