Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Hum Evol ; 161: 103072, 2021 12.
Article in English | MEDLINE | ID: mdl-34628299

ABSTRACT

A tenet of mammalian, including primate dental evolution, is the Inhibitory Cascade Model, where first molar (M1) size predicts in a linear cline the size and onset time of the second (M2) and third (M3) molars: a larger M1 portends a progressively smaller and later-developing M2 and M3. In contemporary modern Homo sapiens, later-developing M3s are less likely to erupt properly. The Inhibitory Cascade Model is also used to predict molar sizes of extinct taxa, including fossil Homo. The extent to which Inhibitory Cascade Model predictions hold in contemporary H. sapiens molars is unclear, including whether this tenet informs about molar initiation, development, and eruption. We tested these questions here. In our radiographic sample of 323 oral quadrants and molar rows from contemporary humans based on mesiodistal crown lengths, we observed the distribution of molar proportions with a central tendency around parity (M1 = M2 = M3) that parsed into 13 distinct molar size ratio patterns. These patterns presented at different frequencies (e.g., M1 > M2 > M3 in about one-third of cases) that reflected whether the molar row was located in the maxilla or mandible and included both linear (e.g., M1 < M2 < M3) and nonlinear molar size ratio progressions (e.g., M1 > M2 < M3). Up to four patterns were found in the same subject's mouth. Lastly, M1 size alone does not predict M3 size, developmental timing, or eruption; rather, M2 size is integral to predicting M3 size. Our study indicates that human molar size is genetically 'softwired' and sensitive to factors local to the human upper jaw vs. lower jaw. The lack of a single stereotypical molar size ratio for contemporary H. sapiens suggests that predictions of fossil H. sapiens molar sizes using the Inhibitory Cascade Model must be made with caution.


Subject(s)
Fossils , Molar , Animals , Humans , Mandible , Maxilla , Tooth Eruption
2.
Acta Odontol Scand ; 74(7): 509-517, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27448555

ABSTRACT

OBJECTIVE: To test in the maxilla and mandible for an association between stage of third-molar (M3) mineralization and space in the jaws for M3 eruption. Mineralization is hypothesized to be delayed not only for impacted M3s but also for M3s with eruption space less than their mesiodistal crown diameter. MATERIAL AND METHODS: Retrospective cone beam computed tomography (CBCT) scans of 37 females and 32 males aged 17-24 years, for a total sample of 197 upper and lower M3s, were used to assess the status of M3 eruption and measure the M3 crown diameter (CD) relative to the length of the retromolar space (RS). Stage of M3 mineralization was then compared between impacted and erupting M3s as well as between two conditions of relative eruption space (RS/CD ≥ 1 versus RS/CD < 1) using Mann-Whitney U tests. RESULTS: Impacted M3s were at significantly earlier (delayed) stages of mineralization compared to erupting M3s. Mineralization was also delayed for M3s with eruption space less than their mesiodistal crown diameter (e.g. RS/CD < 1). A moderate positive correlation between stage of M3 mineralization and space was seen in both jaws, and was stronger in the mandible. CONCLUSION: Our study shows for the first time that stage of M3 mineralization is associated not only with impaction but also with amount of retromolar space, and that these associations are consistent in upper and lower jaws. Present findings underscore that M3 mineralization stage may be a clinically useful predictor of M3 impaction that thus merits further investigation.


Subject(s)
Dental Arch/anatomy & histology , Molar, Third/physiology , Tooth Calcification/physiology , Tooth Eruption/physiology , Adolescent , Cephalometry/methods , Cone-Beam Computed Tomography/methods , Dental Arch/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional/methods , Male , Mandible/anatomy & histology , Mandible/diagnostic imaging , Maxilla/anatomy & histology , Maxilla/diagnostic imaging , Molar, Third/diagnostic imaging , Odontogenesis/physiology , Odontometry/methods , Retrospective Studies , Tooth Crown/anatomy & histology , Tooth Crown/diagnostic imaging , Tooth, Impacted/diagnostic imaging , Tooth, Impacted/pathology , Young Adult
3.
Bone ; 187: 117171, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38901788

ABSTRACT

Glucocorticoids (GCs) are the leading cause of secondary osteoporosis. The emerging perspective, derived primarily from 2D histological study of trabecular bone, is that GC-induced bone loss arises through the uncoupling of bone formation and resorption at the level of the basic multicellular unit (BMU), which carries out bone remodeling. Here we explore the impact of GCs on cortical bone remodeling in the rabbit model. Based upon the rapid reduction of bone formation and initial elevation of resorption caused by GCs, we hypothesized that the rate of advance (longitudinal erosion rate; LER) of cortical BMUs would be increased. To test this hypothesis we divided 20 female New Zealand White rabbits into four experimental groups: ovariohysterectomy (OVH), glucocorticoid (GC), OVH + GC and SHAM controls (n = 5 animals each). Ten weeks post-surgery (OVH or sham), and two weeks after the initiation of dosing (daily subcutaneous injections of 1.5 mg/kg of methylprednisolone sodium succinate in the GC-treated groups and 1 ml of saline for the others), the right tibiae were scanned in vivo using Synchrotron Radiation (SR) in-line phase contrast micro-CT at the Canadian Light Source. After an additional 2 weeks of dosing, the rabbits were euthanized and ex vivo images were collected using desktop micro-CT. The datasets were co-registered in 3D and LER was calculated as the distance traversed by BMU cutting-cones in the 14-day interval between scans. Counter to our hypothesis, LER was greatly reduced in GC-treated rabbits. Mean LER was lower in GC (4.27 µm/d; p < 0.001) and OVH + GC (4.19 µm/d; p < 0.001), while similar in OVH (40.13 µm/d; p = 0.990), compared to SHAM (40.44 µm/d). This approximately 90 % reduction in LER with GCs was also associated with an overall disruption of BMU progression, with radial expansion of the remodeling space occurring in all directions. This unexpected outcome suggests that GCs do not simply uncouple formation and resorption within cortical BMUs and highlights the value of the time-lapsed 4D approach employed.


Subject(s)
Cortical Bone , Glucocorticoids , Tibia , X-Ray Microtomography , Animals , Rabbits , Glucocorticoids/pharmacology , Female , Tibia/drug effects , Tibia/diagnostic imaging , Tibia/pathology , Cortical Bone/drug effects , Cortical Bone/diagnostic imaging , Bone Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL