Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Dev Biol ; 502: 63-67, 2023 10.
Article in English | MEDLINE | ID: mdl-37433390

ABSTRACT

Genome manipulation methods in C. elegans require microinjecting DNA or ribonucleoprotein complexes into the microscopic core of the gonadal syncytium. These microinjections are technically demanding and represent a key bottleneck for all genome engineering and transgenic approaches in C. elegans. While there have been steady improvements in the ease and efficiency of genetic methods for C. elegans genome manipulation, there have not been comparable advances in the physical process of microinjection. Here, we report a simple and inexpensive method for handling worms using a paintbrush during the injection process that nearly tripled average microinjection rates compared to traditional worm handling methods. We found that the paintbrush increased injection throughput by substantially increasing both injection speeds and post-injection survival rates. In addition to dramatically and universally increasing injection efficiency for experienced personnel, the paintbrush method also significantly improved the abilities of novice investigators to perform key steps in the microinjection process. We expect that this method will benefit the C. elegans community by increasing the speed at which new strains can be generated and will also make microinjection-based approaches less challenging and more accessible to personnel and labs without extensive experience.


Subject(s)
Caenorhabditis elegans , Germ Cells , Animals , Caenorhabditis elegans/genetics , Microinjections/methods , Animals, Genetically Modified , DNA/genetics , CRISPR-Cas Systems
2.
PLoS Genet ; 15(12): e1008554, 2019 12.
Article in English | MEDLINE | ID: mdl-31877124

ABSTRACT

The mammalian Pcdhg gene cluster encodes a family of 22 cell adhesion molecules, the gamma-Protocadherins (γ-Pcdhs), critical for neuronal survival and neural circuit formation. The extent to which isoform diversity-a γ-Pcdh hallmark-is required for their functions remains unclear. We used a CRISPR/Cas9 approach to reduce isoform diversity, targeting each Pcdhg variable exon with pooled sgRNAs to generate an allelic series of 26 mouse lines with 1 to 21 isoforms disrupted via discrete indels at guide sites and/or larger deletions/rearrangements. Analysis of 5 mutant lines indicates that postnatal viability and neuronal survival do not require isoform diversity. Surprisingly, given reports that it might not independently engage in trans-interactions, we find that γC4, encoded by Pcdhgc4, is the only critical isoform. Because the human orthologue is the only PCDHG gene constrained in humans, our results indicate a conserved γC4 function that likely involves distinct molecular mechanisms.


Subject(s)
Alternative Splicing , Cadherins/genetics , Mutation , Neurons/metabolism , Animals , CRISPR-Cas Systems , Cadherin Related Proteins , Cadherins/metabolism , Embryonic Development , Exons , Female , Humans , INDEL Mutation , Male , Mice , Multigene Family , Neurons/cytology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Deletion , Whole Genome Sequencing
3.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328061

ABSTRACT

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically-interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific vs. shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified PKC phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via MARCKS is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remains unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point, and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.

4.
Dev Neurobiol ; 84(3): 217-235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837880

ABSTRACT

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.


Subject(s)
Cadherin Related Proteins , Cadherins , Cerebral Cortex , Dendrites , Protein Kinase C , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Cadherins/metabolism , Cadherins/genetics , Phosphorylation/physiology , Dendrites/metabolism , Mice , Protein Kinase C/metabolism , Protein Kinase C/genetics , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Myristoylated Alanine-Rich C Kinase Substrate/genetics , Amino Acid Motifs/physiology , Mice, Transgenic
5.
bioRxiv ; 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36993165

ABSTRACT

Genome manipulation methods in C. elegans require microinjecting DNA or ribonucleoprotein complexes into the microscopic core of the gonadal syncytium. These microinjections are technically demanding and represent a key bottleneck for all genome engineering and transgenic approaches in C. elegans . While there have been steady improvements in the ease and efficiency of genetic methods for C. elegans genome manipulation, there have not been comparable advances in the physical process of microinjection. Here, we report a simple and inexpensive method for handling worms using a paintbrush during the injection process that nearly tripled average microinjection rates compared to traditional worm handling methods. We found that the paintbrush increased injection throughput by substantially increasing both injection speeds and post-injection survival rates. In addition to dramatically and universally increasing injection efficiency for experienced personnel, the paintbrush method also significantly improved the abilities of novice investigators to perform key steps in the microinjection process. We expect that this method will benefit the C. elegans community by increasing the speed at which new strains can be generated and will also make microinjection-based approaches less challenging and more accessible to personnel and labs without extensive experience.

6.
Mol Neurobiol ; 58(6): 2574-2589, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33471287

ABSTRACT

Cell adhesion molecules (CAMs) are key players in the formation of neural circuits during development. The γ-protocadherins (γ-Pcdhs), a family of 22 CAMs encoded by the Pcdhg gene cluster, are known to play important roles in dendrite arborization, axon targeting, and synapse development. We showed previously that multiple γ-Pcdhs interact physically with the autism-associated CAM neuroligin-1, and inhibit the latter's ability to promote excitatory synapse maturation. Here, we show that γ-Pcdhs can also interact physically with the related neuroligin-2, and inhibit this CAM's ability to promote inhibitory synapse development. In an artificial synapse assay, γ-Pcdhs co-expressed with neuroligin-2 in non-neuronal cells reduce inhibitory presynaptic maturation in contacting hippocampal axons. Mice lacking the γ-Pcdhs from the forebrain (including the cortex, the hippocampus, and portions of the amygdala) exhibit increased inhibitory synapse density and increased co-localization of neuroligin-2 with inhibitory postsynaptic markers in vivo. These Pcdhg mutants also exhibit defective social affiliation and an anxiety-like phenotype in behavioral assays. Together, these results suggest that γ-Pcdhs negatively regulate neuroligins to limit synapse density in a manner that is important for normal behavior.


Subject(s)
Cadherins/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Nerve Tissue Proteins/metabolism , Social Interaction , Synapses/metabolism , Animals , Axons/metabolism , Behavior, Animal , COS Cells , Cadherin Related Proteins , Cell Membrane/metabolism , Chlorocebus aethiops , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mutation/genetics , Prosencephalon/metabolism , Protein Binding , Protein Isoforms/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL