Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Materials (Basel) ; 16(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36614543

ABSTRACT

SPIDER is the 100 keV full-size Negative Ion Source prototype of the ITER Neutral Beam Injector, operating at Consorzio RFX in Padova, Italy. The largest Negative Ion Source in the world, SPIDER generates an RF driven plasma from which Deuterium or Hydrogen negative ions are produced and extracted. At the end of 2021, a scheduled long-term shutdown started to introduce major modifications and improvements aiming to solve issues and drawbacks identified during the first three years of SPIDER operations. The first action of the shutdown period was the disassembly and characterization of the SPIDER beam source after removal from the vacuum vessel and its placement inside the clean room. Each component was carefully assessed and catalogued, following a documented procedure. Some source components, i.e., the Plasma Grid, Extraction Grid and Bias Plate, revealed the presence of different and non-uniform red, white and green coatings that might be correlated to back-streaming positive ions impinging on grid surfaces, electrical discharges and caesium evaporation. Thus, several analyses have been carried out to understand the nature of such coatings, with the study still ongoing. The evidence of caesium evaporation and deposition on molybdenum-coated SPIDER components, such as the formation of oxides and hydroxides, is demonstrated through surface characterization analyses with the use of the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS).

2.
Rev Sci Instrum ; 87(2): 02B126, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932008

ABSTRACT

In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

3.
Rev Sci Instrum ; 87(2): 02B311, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932039

ABSTRACT

The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by "off-normal" operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the "off-normal" operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam.

4.
Rev Sci Instrum ; 87(2): 02B314, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932042

ABSTRACT

This contribution regards the Radio Frequency (RF) transmission line of the Megavolt ITER Injector and Concept Advancement (MITICA) experiment. The original design considered copper coaxial lines of 1″ 5/8, but thermal simulations under operating conditions showed maximum temperatures of the lines at regime not compatible with the prescription of the component manufacturer. Hence, an optimization of the design was necessary. Enhancing thermal radiation and increasing the conductor size were considered for design optimization: thermal analyses were carried out to calculate the temperature of MITICA RF lines during operation, as a function of the emissivity value and of other geometrical parameters. Five coating products to increase the conductor surface emissivity were tested, measuring the outgassing behavior of the selected products and the obtained emissivity values.

SELECTION OF CITATIONS
SEARCH DETAIL