ABSTRACT
Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.
Subject(s)
Antimalarials , Malaria, Vivax , Humans , Chloroquine/pharmacology , Chloroquine/therapeutic use , Plasmodium vivax/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaysia , Drug Resistance/genetics , Malaria, Vivax/epidemiology , Alleles , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic useABSTRACT
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLß13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.
Subject(s)
Malaria, Falciparum , Malaria , Adult , Antibodies, Protozoan , Child , Erythrocytes , Humans , Indonesia , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/geneticsABSTRACT
The rapid and aggressive spread of artemisinin-resistant Plasmodium falciparum carrying the C580Y mutation in the kelch13 gene is a growing threat to malaria elimination in Southeast Asia, but there is no evidence of their spread to other regions. We conducted cross-sectional surveys in 2016 and 2017 at two clinics in Wewak, Papua New Guinea (PNG) where we identified three infections caused by C580Y mutants among 239 genotyped clinical samples. One of these mutants exhibited the highest survival rate (6.8%) among all parasites surveyed in ring-stage survival assays (RSA) for artemisinin. Analyses of kelch13 flanking regions, and comparisons of deep sequencing data from 389 clinical samples from PNG, Indonesian Papua and Western Cambodia, suggested an independent origin of the Wewak C580Y mutation, showing that the mutants possess several distinctive genetic features. Identity by descent (IBD) showed that multiple portions of the mutants' genomes share a common origin with parasites found in Indonesian Papua, comprising several mutations within genes previously associated with drug resistance, such as mdr1, ferredoxin, atg18 and pnp. These findings suggest that a P. falciparum lineage circulating on the island of New Guinea has gradually acquired a complex ensemble of variants, including kelch13 C580Y, which have affected the parasites' drug sensitivity. This worrying development reinforces the need for increased surveillance of the evolving parasite populations on the island, to contain the spread of resistance.
Subject(s)
Anti-Infective Agents , Artemisinins , Drug Resistance/genetics , Genes, Protozoan/genetics , Plasmodium falciparum/genetics , Anti-Infective Agents/therapeutic use , Artemisinins/therapeutic use , Cross-Sectional Studies , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Papua New GuineaABSTRACT
BACKGROUND: Microscopic examination of Giemsa-stained blood films remains the reference standard for malaria parasite detection and quantification, but is undermined by difficulties in ensuring high-quality manual reading and inter-reader reliability. Automated parasite detection and quantification may address this issue. METHODS: A multi-centre, observational study was conducted during 2018 and 2019 at 11 sites to assess the performance of the EasyScan Go, a microscopy device employing machine-learning-based image analysis. Sensitivity, specificity, accuracy of species detection and parasite density estimation were assessed with expert microscopy as the reference. Intra- and inter-device reliability of the device was also evaluated by comparing results from repeat reads on the same and two different devices. This study has been reported in accordance with the Standards for Reporting Diagnostic accuracy studies (STARD) checklist. RESULTS: In total, 2250 Giemsa-stained blood films were prepared and read independently by expert microscopists and the EasyScan Go device. The diagnostic sensitivity of EasyScan Go was 91.1% (95% CI 88.9-92.7), and specificity 75.6% (95% CI 73.1-78.0). With good quality slides sensitivity was similar (89.1%, 95%CI 86.2-91.5), but specificity increased to 85.1% (95%CI 82.6-87.4). Sensitivity increased with parasitaemia rising from 57% at < 200 parasite/µL, to ≥ 90% at > 200-200,000 parasite/µL. Species were identified accurately in 93% of Plasmodium falciparum samples (kappa = 0.76, 95% CI 0.69-0.83), and in 92% of Plasmodium vivax samples (kappa = 0.73, 95% CI 0.66-0.80). Parasite density estimates by the EasyScan Go were within ± 25% of the microscopic reference counts in 23% of slides. CONCLUSIONS: The performance of the EasyScan Go in parasite detection and species identification accuracy fulfil WHO-TDR Research Malaria Microscopy competence level 2 criteria. In terms of parasite quantification and false positive rate, it meets the level 4 WHO-TDR Research Malaria Microscopy criteria. All performance parameters were significantly affected by slide quality. Further software improvement is required to improve sensitivity at low parasitaemia and parasite density estimations. Trial registration ClinicalTrials.gov number NCT03512678.
Subject(s)
Malaria, Falciparum , Malaria , Diagnostic Tests, Routine/methods , Humans , Machine Learning , Malaria/diagnosis , Malaria/parasitology , Malaria, Falciparum/parasitology , Microscopy/methods , Parasitemia/diagnosis , Parasitemia/parasitology , Plasmodium falciparum , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
Sarah Auburn and co-authors discuss the unique biology and epidemiology of P. vivax and current evidence on conventional and new approaches to surveillance.
Subject(s)
Epidemiological Monitoring , Malaria, Vivax/epidemiology , Plasmodium vivax/physiology , Population Surveillance , HumansABSTRACT
BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) activity is dependent upon G6PD genotype and age of the red blood cell (RBC) population, with younger RBCs having higher activity. Peripheral parasitemia with Plasmodium spp. induces hemolysis, replacing older RBCs with younger cells with higher G6PD activity. This study aimed to assess whether G6PD activity varies between individuals with and without malaria or a history of malaria. METHODS AND FINDINGS: Individuals living in the Chittagong Hill Tracts of Bangladesh were enrolled into 3 complementary studies: (i) a prospective, single-arm clinical efficacy trial of patients (n = 175) with uncomplicated malaria done between 2014 and 2015, (ii) a cross-sectional survey done between 2015 and 2016 (n = 999), and (iii) a matched case-control study of aparasitemic individuals with and without a history of malaria done in 2020 (n = 506). G6PD activity was compared between individuals with and without malaria diagnosed by microscopy, rapid diagnostic test (RDT), or polymerase chain reaction (PCR), and in aparasitemic participants with and without a history of malaria. In the cross-sectional survey and clinical trial, 15.5% (182/1,174) of participants had peripheral parasitemia detected by microscopy or RDT, 3.1% (36/1,174) were positive by PCR only, and 81.4% (956/1,174) were aparasitemic. Aparasitemic individuals had significantly lower G6PD activity (median 6.9 U/g Hb, IQR 5.2-8.6) than those with peripheral parasitemia detected by microscopy or RDT (7.9 U/g Hb, IQR 6.6-9.8, p < 0.001), but G6PD activity similar to those with parasitemia detected by PCR alone (submicroscopic parasitemia) (6.1 U/g Hb, IQR 4.8-8.6, p = 0.312). In total, 7.7% (14/182) of patients with malaria had G6PD activity < 70% compared to 25.0% (248/992) of participants with submicroscopic or no parasitemia (odds ratio [OR] 0.25, 95% CI 0.14-0.44, p < 0.001). In the case-control study, the median G6PD activity was 10.3 U/g Hb (IQR 8.8-12.2) in 253 patients with a history of malaria and 10.2 U/g Hb (IQR 8.7-11.8) in 253 individuals without a history of malaria (p = 0.323). The proportion of individuals with G6PD activity < 70% was 11.5% (29/253) in the cases and 15.4% (39/253) in the controls (OR 0.7, 95% CI 0.41-1.23, p = 0.192). Limitations of the study included the non-contemporaneous nature of the clinical trial and cross-sectional survey. CONCLUSIONS: Patients with acute malaria had significantly higher G6PD activity than individuals without malaria, and this could not be accounted for by a protective effect of G6PD deficiency. G6PD-deficient patients with malaria may have higher than expected G6PD enzyme activity and an attenuated risk of primaquine-induced hemolysis compared to the risk when not infected.
Subject(s)
Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase/metabolism , Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Bangladesh/epidemiology , Case-Control Studies , Child , Child, Preschool , Clinical Trials as Topic , Cross-Sectional Studies , Female , Glucosephosphate Dehydrogenase Deficiency/metabolism , Humans , Infant , Infant, Newborn , Malaria/parasitology , Male , Middle Aged , Parasitemia/epidemiology , Parasitemia/parasitology , Young AdultABSTRACT
Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.
Subject(s)
Antigens, Protozoan/genetics , Antigens, Surface/genetics , Malaria/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Transcriptome , Gene Expression Regulation , Humans , Malaria/pathology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism , Sequence Analysis, RNAABSTRACT
BACKGROUND: Primaquine is the only widely used drug that prevents Plasmodium vivax malaria relapses, but adherence to the standard 14-day regimen is poor. We aimed to assess the efficacy of a shorter course (7 days) of primaquine for radical cure of vivax malaria. METHODS: We did a randomised, double-blind, placebo-controlled, non-inferiority trial in eight health-care clinics (two each in Afghanistan, Ethiopia, Indonesia, and Vietnam). Patients (aged ≥6 months) with normal glucose-6-phosphate dehydrogenase (G6PD) and presenting with uncomplicated vivax malaria were enrolled. Patients were given standard blood schizontocidal treatment and randomly assigned (2:2:1) to receive 7 days of supervised primaquine (1·0 mg/kg per day), 14 days of supervised primaquine (0·5 mg/kg per day), or placebo. The primary endpoint was the incidence rate of symptomatic P vivax parasitaemia during the 12-month follow-up period, assessed in the intention-to-treat population. A margin of 0·07 recurrences per person-year was used to establish non-inferiority of the 7-day regimen compared with the 14-day regimen. This trial is registered at ClinicalTrials.gov (NCT01814683). FINDINGS: Between July 20, 2014, and Nov 25, 2017, 2336 patients were enrolled. The incidence rate of symptomatic recurrent P vivax malaria was 0·18 (95% CI 0·15 to 0·21) recurrences per person-year for 935 patients in the 7-day primaquine group and 0·16 (0·13 to 0·18) for 937 patients in the 14-day primaquine group, a difference of 0·02 (-0·02 to 0·05, p=0·3405). The incidence rate for 464 patients in the placebo group was 0·96 (95% CI 0·83 to 1·08) recurrences per person-year. Potentially drug-related serious adverse events within 42 days of starting treatment were reported in nine (1·0%) of 935 patients in the 7-day group, one (0·1%) of 937 in the 14-day group and none of 464 in the control arm. Four of the serious adverse events were significant haemolysis (three in the 7-day group and one in the 14-day group). INTERPRETATION: In patients with normal G6PD, 7-day primaquine was well tolerated and non-inferior to 14-day primaquine. The short-course regimen might improve adherence and therefore the effectiveness of primaquine for radical cure of P vivax malaria. FUNDING: UK Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust through the Joint Global Health Trials Scheme (MR/K007424/1) and the Bill & Melinda Gates Foundation (OPP1054404).
Subject(s)
Antimalarials/administration & dosage , Malaria, Vivax/drug therapy , Primaquine/administration & dosage , Adolescent , Adult , Antimalarials/adverse effects , Antimalarials/therapeutic use , Child , Child, Preschool , Double-Blind Method , Drug Administration Schedule , Equivalence Trials as Topic , Female , Follow-Up Studies , Humans , Malaria, Vivax/parasitology , Male , Medication Adherence/statistics & numerical data , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium vivax/isolation & purification , Primaquine/adverse effects , Primaquine/therapeutic use , Recurrence , Secondary Prevention/methods , Young AdultABSTRACT
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Subject(s)
Epidemiological Monitoring , Genotype , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Population Surveillance , Asia/epidemiology , Congresses as Topic , Feedback , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Pacific Islands/epidemiologyABSTRACT
The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
Subject(s)
Genotype , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Selection, Genetic , Adaptation, Biological , Adolescent , Animals , Child , Child, Preschool , Ethiopia , Female , Humans , Infant , Infant, Newborn , Male , Plasmodium vivax/classification , PrevalenceABSTRACT
BACKGROUND: Malaria control activities can have a disproportionately greater impact on Plasmodium falciparum than on P. vivax in areas where both species are coendemic. We investigated temporal trends in malaria-related morbidity and mortality in Papua, Indonesia, before and after introduction of a universal, artemisinin-based antimalarial treatment strategy for all Plasmodium species. METHODS AND FINDINGS: A prospective, district-wide malariometric surveillance system was established in April 2004 to record all cases of malaria at community clinics and the regional hospital and maintained until December 2013. In March 2006, antimalarial treatment policy was changed to artemisinin combination therapy for uncomplicated malaria and intravenous artesunate for severe malaria due to any Plasmodium species. Over the study period, a total of 418,238 patients presented to the surveillance facilities with malaria. The proportion of patients with malaria requiring admission to hospital fell from 26.9% (7,745/28,789) in the pre-policy change period (April 2004 to March 2006) to 14.0% (4,786/34,117) in the late transition period (April 2008 to December 2009), a difference of -12.9% (95% confidence interval [CI] -13.5% to -12.2%). There was a significant fall in the mortality of patients presenting to the hospital with P. falciparum malaria (0.53% [100/18,965] versus 0.32% [57/17,691]; difference = -0.21% [95% CI -0.34 to -0.07]) but not in patients with P. vivax malaria (0.28% [21/7,545] versus 0.23% [28/12,397]; difference = -0.05% [95% CI -0.20 to 0.09]). Between the same periods, the overall proportion of malaria due to P. vivax rose from 44.1% (30,444/69,098) to 53.3% (29,934/56,125) in the community clinics and from 32.4% (9,325/28,789) to 44.1% (15,035/34,117) at the hospital. After controlling for population growth and changes in treatment-seeking behaviour, the incidence of P. falciparum malaria fell from 511 to 249 per 1,000 person-years (py) (incidence rate ratio [IRR] = 0.49 [95% CI 0.48-0.49]), whereas the incidence of P. vivax malaria fell from 331 to 239 per 1,000 py (IRR = 0.72 [95% CI 0.71-0.73]). The main limitations of our study were possible confounding from changes in healthcare provision, a growing population, and significant shifts in treatment-seeking behaviour following implementation of a new antimalarial policy. CONCLUSIONS: In this area with high levels of antimalarial drug resistance, adoption of a universal policy of efficacious artemisinin-based therapy for malaria infections due to any Plasmodium species was associated with a significant reduction in total malaria-attributable morbidity and mortality. The burden of P. falciparum malaria was reduced to a greater extent than that of P. vivax malaria. In coendemic regions, the timely elimination of malaria will require that safe and effective radical cure of both the blood and liver stages of the parasite is widely available for all patients at risk of malaria.
Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria/drug therapy , Drug Resistance, Multiple , Humans , Incidence , Indonesia/epidemiology , Longitudinal Studies , Malaria/mortality , Malaria/parasitology , Population Surveillance , Program Evaluation , Prospective Studies , Risk Factors , Time Factors , Treatment OutcomeABSTRACT
The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.
ABSTRACT
BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia. METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count < 100,000/µL admitted to 3 adjacent district hospitals in Sabah, East Malaysia. On day 3 and 4 all patients were administered split dose mefloquine (total dose 25 mg/kg) and followed for 28 days. Twenty-one kelch13 polymorphisms associated with P. falciparum artemisinin resistance were also evaluated in P. falciparum isolates collected from patients presenting to health facilities predominantly within the tertiary referral area of western Sabah between 2012 and 2016. RESULTS: In total, 49 patients were enrolled and treated with oral artesunate. 90% (44/49) of patients had cleared their parasitaemia by 48 h and 100% (49/49) within 72 h. The geometric mean parasite count at presentation was 9463/µL (95% CI 6757-13,254), with a median time to 50% parasite clearance of 4.3 h (IQR 2.0-8.4). There were 3/45 (7%) patients with a parasite clearance slope half-life of ≥ 5 h. All 278 P. falciparum isolates evaluated were wild-type for kelch13 markers. CONCLUSION: There is no suspected or confirmed evidence of endemic artemisinin-resistant P. falciparum in this pre-elimination setting in Sabah, Malaysia. Current guidelines recommending first-line treatment with ACT remain appropriate for uncomplicated malaria in Sabah, Malaysia. Ongoing surveillance is needed southeast of the Greater Mekong sub-region.
Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Adolescent , Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Child , Child, Preschool , Female , Genetic Markers/genetics , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaysia/epidemiology , Male , Middle Aged , Molecular Epidemiology , Parasite Load , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Treatment Outcome , Young AdultABSTRACT
BACKGROUND: First-line schizontocidal treatment for uncomplicated malaria in the Republic of the Sudan is artesunate (total dose 12 mg/kg) plus Sulphadoxine/pyrimethamine (25/1.25 mg/kg) (AS/SP). Patients with Plasmodium vivax are also treated with 14 days primaquine (total dose 3.5 mg/kg) (PQ). The aim of this study was to assess the efficacy of the national policy. METHODS: Patients above 1 year, with microscopy-confirmed, Plasmodium falciparum and/or P. vivax malaria were treated with AS/SP. Patients with P. falciparum were randomized to no primaquine (Pf-noPQ) or a single 0.25 mg/kg dose of PQ (Pf-PQ1). Patients with P. vivax received 14 days unsupervised 3.5 mg/kg PQ (Pv-PQ14) on day 2 or at the end of follow up (Pv-noPQ). Primary endpoint was the risk of recurrent parasitaemia at day 42. G6PD activity was measured by spectrophotometry and the Accessbio Biosensor™. RESULTS: 231 patients with P. falciparum (74.8%), 77 (24.9%) with P. vivax and 1 (0.3%) patient with mixed infection were enrolled. The PCR corrected cumulative risk of recurrent parasitaemia on day 42 was 3.8% (95% CI 1.2-11.2%) in the Pf-noPQ arm compared to 0.9% (95% CI 0.1-6.0%) in the Pf-PQ1 arm; (HR = 0.25 [95% CI 0.03-2.38], p = 0.189). The corresponding risks of recurrence were 13.4% (95% CI 5.2-31.9%) in the Pv-noPQ arm and 5.3% (95% CI 1.3-19.4%) in the Pv-PQ14 arm (HR 0.36 [95% CI 0.1-2.0], p = 0.212). Two (0.9%) patients had G6PD enzyme activity below 10%, 19 (8.9%) patients below 60% of the adjusted male median. Correlation between spectrophotometry and Biosensor™ was low (rs = 0.330, p < 0.001). CONCLUSION: AS/SP remains effective for the treatment of P. falciparum and P. vivax. The addition of PQ reduced the risk of recurrent P. falciparum and P. vivax by day 42, although this did not reach statistical significance. The version of the Biosensor™ assessed is not suitable for routine use. Trial registration https://clinicaltrials.gov/ct2/show/NCT02592408.
Subject(s)
Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Adolescent , Adult , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Male , Primaquine/administration & dosage , Pyrimethamine/administration & dosage , Recurrence , Sudan/epidemiology , Sulfadoxine/administration & dosageABSTRACT
The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
Subject(s)
Antimalarials/therapeutic use , Malaria, Vivax/prevention & control , Plasmodium vivax/drug effects , Primaquine/therapeutic use , Treatment Adherence and Compliance/statistics & numerical data , Asia , Humans , Pacific Islands , Treatment OutcomeABSTRACT
Plasmodium malariae is the only human malaria parasite species with a 72-hour intraerythrocytic cycle and the ability to persist in the host for life. We present a case of a P. malariae infection with clinical recrudescence after directly observed administration of artemether/lumefantrine. By using whole-genome sequencing, we show that the initial infection was polyclonal and the recrudescent isolate was a single clone present at low density in the initial infection. Haplotypic analysis of the clones in the initial infection revealed that they were all closely related and were presumably recombinant progeny originating from the same infective mosquito bite. We review possible explanations for the P. malariae treatment failure and conclude that a 3-day artemether/lumefantrine regimen is suboptimal for this species because of its long asexual life cycle.
Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Ethanolamines/therapeutic use , Fluorenes/therapeutic use , Malaria/drug therapy , Malaria/parasitology , Plasmodium malariae , Adult , Artemether, Lumefantrine Drug Combination , Drug Combinations , Drug Resistance , Humans , Hydroxychloroquine/therapeutic use , Male , Plasmodium malariae/genetics , Primaquine/therapeutic use , RecurrenceABSTRACT
High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum, CQ 50% inhibitory concentrations (IC50s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs (R2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC50s was observed with any of the CQRRAs in P. vivax, even in those isolates with high chloroquine IC50s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species.
Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/physiology , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Humans , Indonesia , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Parasitic Sensitivity Tests , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purificationABSTRACT
BACKGROUND: Artemisinin resistance is present in the Greater Mekong region and poses a significant threat for current anti-malarial treatment guidelines in Bangladesh. The aim of this molecular study was to assess the current status of drug resistance in the Chittagong Hill Tracts of Bangladesh near the Myanmar border. METHODS: Samples were obtained from patients enrolled into a Clinical Trial (NCT02389374) conducted in Alikadam, Bandarban between August 2014 and January 2015. Plasmodium falciparum infections were confirmed by PCR and all P. falciparum positive isolates genotyped for the pfcrt K76T and pfmdr1 N86Y markers. The propeller region of the kelch 13 (k13) gene was sequenced from isolates from patients with delayed parasite clearance. RESULTS: In total, 130 P. falciparum isolates were available for analysis. The pfcrt mutation K76T, associated with chloroquine resistance was found in 81.5% (106/130) of cases and the pfmdr1 mutation N86Y in 13.9% (18/130) cases. No single nucleotide polymorphisms were observed in the k13 propeller region. CONCLUSION: This study provides molecular evidence for the ongoing presence of chloroquine resistant P. falciparum in Bangladesh, but no evidence of mutations in the k13 propeller domain associated with artemisinin resistance. Monitoring for artemisinin susceptibility in Bangladesh is needed to ensure early detection and containment emerging anti-malarial resistance.
Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bangladesh , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plasmodium falciparum/growth & development , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sequence Analysis, DNAABSTRACT
The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
Subject(s)
Antimalarials/administration & dosage , Antimalarials/adverse effects , Malaria, Vivax/drug therapy , Asia , Diagnostic Tests, Routine/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions/prevention & control , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Humans , Pacific IslandsABSTRACT
BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.