Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000496

ABSTRACT

It is generally accepted that adjacent guanine residues in DNA are the primary target for platinum antitumor drugs and that differences in the conformations of the Pt-DNA adducts can play a role in their antitumor activity. In this study, we investigated the effect of the carrier ligand cis-1,3-diaminocyclohexane (cis-1,3-DACH) upon formation, stability, and stereochemistry of the (cis-1,3-DACH)PtG2 and (cis-1,3-DACH)Pt(d(GpG)) adducts (G = 9-EthlyGuanine, guanosine, 5'- and 3'-guanosine monophosphate; d(GpG) = deoxyguanosil(3'-5')deoxyguanosine). A peculiar feature of the cis-1,3-DACH carrier ligand is the steric bulk of the diamine, which is asymmetric with respect to the Pt-coordination plane. The (cis-1,3-DACH)Pt(5'GMP)2 and (cis-1,3-DACH)Pt(3'GMP)2 adducts show preference for the ΛHT and ∆HT conformations, respectively (HT stands for Head-to-Tail). Moreover, the increased intensity of the circular dichroism signals in the cis-1,3-DACH derivatives with respect to the analogous cis-(NH3)2 species could be a consequence of the greater bite angle of the cis-1,3-DACH carrier ligand with respect to cis-(NH3)2. Finally, the (cis-1,3-DACH)Pt(d(GpG)) adduct is present in two isomeric forms, each one giving a pair of H8 resonances linked by a NOE cross peak. The two isomers were formed in comparable amounts and had a dominance of the HH conformer but with some contribution of the ΔHT conformer which is related to the HH conformer by having the 3'-G base flipped with respect to the 5'-G residue.


Subject(s)
DNA Adducts , DNA , Oxaliplatin , DNA/chemistry , DNA/metabolism , DNA Adducts/chemistry , Oxaliplatin/chemistry , Oxaliplatin/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ligands , Models, Molecular , Nucleic Acid Conformation
2.
J Biol Inorg Chem ; 28(7): 669-678, 2023 10.
Article in English | MEDLINE | ID: mdl-37624480

ABSTRACT

(1R,2R-diaminocyclohexane)(dihydropyrophosphato) platinum(II), also abbreviated as RRD2, belongs to a class of potent antitumor platinum cytostatics called phosphaplatins. Curiously, several published studies have suggested significant mechanistic differences between phosphaplatins and conventional platinum antitumor drugs. Controversial findings have been published regarding the role of RRD2 binding to DNA in the mechanism of its antiproliferative activity in cancer cells. This prompted us to perform detailed studies to confirm or rule out the role of RRD2 binding to DNA in its antiproliferative effect in cancer cells. Here, we show that RRD2 exhibits excellent antiproliferative activity in various cancer cell lines, with IC50 values in the low micromolar or submicromolar range. Moreover, the results of this study demonstrate that DNA lesions caused by RRD2 contribute to killing cancer cells treated with this phosphaplatin derivative. Additionally, our data indicate that RRD2 accumulates in cancer cells but to a lesser extent than cisplatin. On the other hand, the efficiency of cisplatin and RRD2, after they accumulate in cancer cells, in binding to nuclear DNA is similar. Our results also show that RRD2 in the medium, in which the cells were cultured before RRD2 accumulated inside the cells, remained intact. This result is consistent with the view that RRD2 is activated by releasing free pyrophosphate only in the environment of cancer cells, thereby allowing RRD2 to bind to nuclear DNA.


Subject(s)
Antineoplastic Agents , Neoplasms , Oxaliplatin/pharmacology , Cisplatin/pharmacology , Platinum/pharmacology , Diphosphates/pharmacology , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , DNA/metabolism
3.
Nano Lett ; 22(11): 4437-4444, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35609011

ABSTRACT

CsPbBr3 nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr3 NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr3 synthesis precursors and surfactants leads to the in situ formation of a zwitterionic ligand already before cesium injection. As a result, CsPbBr3 NCs become insoluble in nonpolar hexane, with which they can be washed and purified, and form stable colloidal solutions in a relatively polar medium (dichloromethane), even when longly exposed to ambient conditions. The improved NC stability stems from the effective bidentate adsorption of the zwitterionic ligand on the perovskite surfaces, as supported by theoretical investigations. Furthermore, the bidentate functionalization of the zwitterionic ligand enables the obtainment of blue-emitting perovskite NCs with high PLQYs by UV-irradiation in dichloromethane, functioning as the photoinduced chlorine source.

4.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175624

ABSTRACT

The year 2023 marks the 45th year since FDA approval of cisplatin as an anticancer drug, and, at present, it is widely used against a spectrum of human tumors, including early-stage ovarian cancer, non-small cell lung cancer (typically developed by smokers), head and neck, and advanced bladder cancer [...].


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Head and Neck Neoplasms , Lung Neoplasms , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
5.
Int J Mol Sci ; 23(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35806087

ABSTRACT

Kiteplatin, [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane), contains an isomeric form of the oxaliplatin diamine ligand trans-1R,2R-DACH and has been proposed as a valuable drug candidate against cisplatin- and oxaliplatin-resistant tumors, in particular, colorectal cancer. To further improve the activity of kiteplatin, it has been transformed into a Pt(IV) prodrug by the addition of two benzoato groups in the axial positions. The new compound, cis,trans,cis-[PtCl2(OBz)2(cis-1,4-DACH)] (1; OBz = benzoate), showed cytotoxic activity at nanomolar concentration against a wide panel of human cancer cell lines. Based on these very promising results, the investigation has been extended to the in vivo activity of compound 1 in a Lewis Lung Carcinoma (LLC) model and its suitability for oral administration. Compound 1 resulted to be remarkably stable in acidic conditions (pH 1.5 to mimic the stomach environment) undergoing a drop of the initial concentration to ~60% of the initial one only after 72 h incubation at 37 °C; thus resulting amenable for oral administration. Interestingly, in a murine model (2·106 LLC cells implanted i.m. into the right hind leg of 8-week old male and female C57BL mice), a comparable reduction of tumor mass (~75%) was observed by administering compound 1 by oral gavage and the standard drug cisplatin by intraperitoneal injection, thus indicating that, indeed, there is the possibility of oral administration for this dibenzoato prodrug of kiteplatin. Moreover, since the mechanism of action of Pt(IV) prodrugs involves an initial activation by chemical reduction to cytotoxic Pt(II) species, the reduction of 1 by two bioreductants (ascorbic acid/sodium ascorbate and glutathione) was investigated resulting to be rather slow (not complete after 120 h incubation at 37 °C). Finally, the neurotoxicity of 1 was evaluated using an in vitro assay.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Administration, Oral , Animals , Antineoplastic Agents/therapeutic use , Cisplatin/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Organoplatinum Compounds , Oxaliplatin/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology
6.
Molecules ; 26(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200051

ABSTRACT

Two new Pt(II)-pyrophosphato complexes containing the carrier ligands cis-1,3-diaminocyclohexane (cis-1,3-DACH) and trans-1,2-diamine-4-cyclohexene (1,2-DACHEX), variants of the 1R,2R-diaminocyclohexane ligand present in the clinically used Pt-drug oxaliplatin, have been synthesized with the aim of developing new potential antitumor drugs with high bone tropism. The complexes are more stable at physiological pH than in acid conditions, with Na2[Pt(pyrophosphato)(cis-1,3-DACH)] (1) slightly more stable than [Pt(dihydrogenpyrophosphato)(1,2-DACHEX)] (2). The greater reactivity at acidic pH ensures a greater efficacy at the tumor site. Preliminary NMR studies indicate that 1 and 2 react slowly with 5'-GMP (used as a model of nucleic acids), releasing the pyrophosphate ligand and affording the bis 5'-GMP adduct. In vitro cytotoxicity assays performed against a panel of four human cancer cell lines have shown that both compounds are more active than oxaliplatin. Flow cytometry studies on HCT116 cells showed that the pyrophosphato compounds with the non-classical 1,3- and 1,4-diaminocyclohexane ligands (1 and 4) are the most capable to induce cells' death by apoptosis and necrosis.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Organoplatinum Compounds/pharmacology , Oxaliplatin/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , HCT116 Cells , Humans , Hydrogen-Ion Concentration , Male , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , PC-3 Cells
7.
Int J Mol Sci ; 21(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230896

ABSTRACT

Six platinum(IV) compounds derived from an oxaliplatin analogue containing the unsaturated cyclic diamine trans-1,2-diamino-4-cyclohexene (DACHEX), in place of the 1,2-diaminocyclohexane, and a range of axial ligands, were synthesized and characterized. The derivatives with at least one axial chlorido ligand demonstrated solvent-assisted photoreduction. The electrochemical redox behavior was investigated by cyclic voltammetry; all compounds showed reduction potentials suitable for activation in vivo. X-ray photoelectron spectroscopy (XPS) data indicated an X-ray-induced surface reduction of the Pt(IV) substrates, which correlates with the reduction potentials measured by cyclic voltammetry. The cytotoxic activity was assessed in vitro on a panel of human cancer cell lines, also including oxaliplatin-resistant cancer cells, and compared with that of the reference compounds cisplatin and oxaliplatin; all IC50 values were remarkably lower than those elicited by cisplatin and somewhat lower than those of oxaliplatin. Compared to the other Pt(IV) compounds of the series, the bis-benzoate derivative was by far (5-8 times) the most cytotoxic showing that low reduction potential and high lipophilicity are essential for good cytotoxicity. Interestingly, all the complexes proved to be more active than cisplatin and oxaliplatin even in three-dimensional spheroids of A431 human cervical cancer cells.


Subject(s)
Antineoplastic Agents/chemistry , Cyclohexenes/chemistry , Organoplatinum Compounds/chemistry , Oxaliplatin/analogs & derivatives , Prodrugs/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/chemistry , Cisplatin/pharmacology , Cyclohexenes/chemical synthesis , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Humans , Ligands , Neoplasms/drug therapy , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/pharmacology , Oxaliplatin/chemistry , Oxaliplatin/pharmacology , Prodrugs/chemical synthesis , Prodrugs/pharmacology
8.
Int J Mol Sci ; 19(7)2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30011897

ABSTRACT

Platinum(II) drugs are activated intracellularly by aquation of the leaving groups and then bind to DNA, forming DNA adducts capable to activate various signal-transduction pathways. Mostly explored in recent years are Pt(IV) complexes which allow the presence of two additional ligands in the axial positions suitable for the attachment of other cancer-targeting ligands. Here we have extended this strategy by coordinating in the axial positions of kiteplatin ([PtCl2(cis-1,4-DACH)], DACH = Diaminocyclohexane) and its CBDCA (1,1-cyclobutanedicarboxylate) analogue the antioxidant α-Lipoic acid (ALA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK). The new compounds (cis,trans,cis-[Pt(CBDCA)(ALA)2(cis-1,4-DACH)], 2, and cis,trans,cis-[PtCl2(ALA)2(cis-1,4-DACH)], 3), after intracellular reduction, release the precursor Pt(II) species and two molecules of ALA. The Pt residue is able to target DNA, while ALA could act on mitochondria as activator of the pyruvate dehydrogenase complex, thus suppressing anaerobic glycolysis. Compounds 2 and 3 were tested in vitro on a panel of five human cancer cell lines and compared to cisplatin, oxaliplatin, and kiteplatin. They proved to be much more effective than the reference compounds, with complex 3 most effective in 3D spheroid tumor cultures. Notably, treatment of human A431 carcinoma cells with 2 and 3 did not determine increase of cellular ROS (usually correlated to inhibition of mitochondrial PDK) and did not induce a significant depolarization of the mitochondrial membrane or alteration of other morphological mitochondrial parameters.


Subject(s)
Mitochondria/metabolism , Organoplatinum Compounds/metabolism , Platinum/metabolism , Prodrugs/metabolism , Thioctic Acid/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/chemistry , Cisplatin/metabolism , Cisplatin/pharmacology , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Molecular Structure , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Oxaliplatin , Platinum/chemistry , Platinum/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Reactive Oxygen Species/metabolism , Thioctic Acid/chemistry , Thioctic Acid/pharmacology
9.
Inorg Chem ; 56(13): 7482-7493, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28636387

ABSTRACT

Two new Pt(II) derivatives of kiteplatin ([PtCl2(cis-1,4-DACH)]) with pyrophosphate as carrier ligand, one mononuclear (1) and one dinuclear (2), were synthesized with the aim of potentiating the efficacy of kiteplatin. Complex 1 resulted to be remarkably stable at physiological pH, but it undergoes a fast hydrolysis reaction at acidic pH releasing free pyrophosphate and (aquated) kiteplatin. The dinuclear compound 2 resulted to be less stable than 1 at both neutral and acidic pH forming 1 and (aquated) kiteplatin as first step. Both compounds (1 and 2) do not react as such with 5'-GMP, whereas their hydrolysis products readily form adducts with the nucleotide. The in vitro cytotoxicity assays against a panel of six human cancer cell lines showed that complex 2 affects cancer cell viability even at nanomolar concentrations. The cytotoxic activity of 2 is greater (up to 2 orders of magnitude) than that of cisplatin, oxaliplatin, and kiteplatin, whereas the mononuclear complex 1 has shown a cytotoxic activity comparable to that of oxaliplatin and kiteplatin, but higher than cisplatin. The latter result is not surprising, since the presence of two negative charges reduces the uptake of 1 into the tumor cells as compared to the neutral compound 2. The remarkable activity of 2 against the pancreatic cell line BxPC3 (average IC50 = 0.07 µM) deserves further investigation.


Subject(s)
Antineoplastic Agents/pharmacology , Diphosphates/pharmacology , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diphosphates/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Structure-Activity Relationship
10.
Int J Mol Sci ; 18(2)2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28146116

ABSTRACT

The immediate visual comparison of platinum chemotherapeutics' effects in eukaryotic cells using accessible plant models of transgenic Arabidopsis thaliana is reported. The leading anticancer drug cisplatin, a third generation drug used for colon cancer, oxaliplatin and kiteplatin, promising Pt-based anticancer drugs effective against resistant lines, were administered to transgenic A. thaliana plants monitoring their effects on cells from different tissues. The transgenic plants' cell cytoskeletons were labelled by the green fluorescent protein (GFP)-tagged microtubule-protein TUA6 (TUA6-GFP), while the vacuolar organization was evidenced by two soluble chimerical GFPs (GFPChi and AleuGFP) and one transmembrane GFP-tagged tonoplast intrinsic protein 1-1 (TIP1.1-GFP). The three drugs showed easily recognizable effects on plant subcellular organization, thereby providing evidence for a differentiated drug targeting. Genetically modified A. thaliana are confirmed as a possible rapid and low-cost screening tool for better understanding the mechanism of action of human anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Organoplatinum Compounds/pharmacology , Plant Cells/drug effects , Plant Cells/metabolism , Arabidopsis , Biological Transport/drug effects , Cytoskeleton/metabolism , Gene Expression , Genes, Reporter , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Oxaliplatin , Plants, Genetically Modified , Vacuoles/metabolism
11.
Int J Mol Sci ; 17(7)2016 Jun 25.
Article in English | MEDLINE | ID: mdl-27347942

ABSTRACT

The first Pt(IV) derivative of oxaliplatin carrying a ligand for TSPO (the 18-kDa mitochondrial translocator protein) has been developed. The expression of the translocator protein in the brain and liver of healthy humans is usually low, oppositely to steroid-synthesizing and rapidly proliferating tissues, where TSPO is much more abundant. The novel Pt(IV) complex, cis,trans,cis-[Pt(ethanedioato)Cl{2-(2-(4-(6,8-dichloro-3-(2-(dipropylamino)-2-oxoethyl)imidazo[1,2-a]pyridin-2-yl)phenoxy)acetate)-ethanolato}(1R,2R-DACH)] (DACH = diaminocyclohexane), has been fully characterized by spectroscopic and spectrometric techniques and tested in vitro against human MCF7 breast carcinoma, U87 glioblastoma, and LoVo colon adenocarcinoma cell lines. In addition, affinity for TSPO (IC50 = 18.64 nM), cellular uptake (ca. 2 times greater than that of oxaliplatin in LoVo cancer cells, after 24 h treatment), and perturbation of cell cycle progression were investigated. Although the new compound was less active than oxaliplatin and did not exploit a synergistic proapoptotic effect due to the presence of the TSPO ligand, it appears to be promising in a receptor-mediated drug targeting context towards TSPO-overexpressing tumors, in particular colorectal cancer (IC50 = 2.31 µM after 72 h treatment).


Subject(s)
Antineoplastic Agents/chemical synthesis , Organoplatinum Compounds/chemical synthesis , Receptors, GABA/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Cycle/drug effects , Humans , Ligands , MCF-7 Cells , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/toxicity , Oxaliplatin , Protein Binding , Rats
12.
Int J Mol Sci ; 17(7)2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27399688

ABSTRACT

The 18-kDa translocator protein (TSPO) levels are associated with brain, breast, and prostate cancer progression and have emerged as viable targets for cancer therapy and imaging. In order to develop highly selective and active ligands with a high affinity for TSPO, imidazopyridine-based TSPO ligand (CB256, 3) was prepared as the precursor. (99m)Tc- and Re-CB256 (1 and 2, respectively) were synthesized in high radiochemical yield (74.5% ± 6.4%, decay-corrected, n = 5) and chemical yield (65.6%) by the incorporation of the [(99m)Tc(CO)3(H2O)3]⁺ and (NEt4)2[Re(CO)3Br3] followed by HPLC separation. Radio-ligand 1 was shown to be stable (>99%) when incubated in human serum for 4 h at 37 °C with a relatively low lipophilicity (logD = 2.15 ± 0.02). The rhenium-185 and -187 complex 2 exhibited a moderate affinity (Ki = 159.3 ± 8.7 nM) for TSPO, whereas its cytotoxicity evaluated on TSPO-rich tumor cell lines was lower than that observed for the precursor. In vitro uptake studies of 1 in C6 and U87-MG cells for 60 min was found to be 9.84% ± 0.17% and 7.87% ± 0.23% ID, respectively. Our results indicated that (99m)Tc-CB256 can be considered as a potential new TSPO-rich cancer SPECT imaging agent and provides the foundation for further in vivo evaluation.


Subject(s)
Pyridines/chemistry , Radiopharmaceuticals/chemical synthesis , Receptors, GABA/metabolism , Technetium/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Hep G2 Cells , Humans , Kinesics , MCF-7 Cells , Neoplasms/diagnostic imaging , Pyridines/metabolism , Pyridines/toxicity , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/toxicity , Rats , Receptors, GABA/chemistry , Tomography, Emission-Computed, Single-Photon
13.
J Biol Inorg Chem ; 20(1): 35-48, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25377895

ABSTRACT

The reaction of the potential anticancer drug kiteplatin, cis-[PtCl2(cis-1,4-DACH)], with oligomers of single- and double-stranded DNA ranging from 2 to 12 base pairs in length was performed as a model for DNA interaction. The potential for conformational flexibility of single-stranded adducts was examined with density functional theory (DFT) and compared with data from (1)H-NMR 1D and 2D spectroscopy. This indicates the presence of multiple conformations of an adduct with d(GpG), but only one form of the adduct with d(TGGT). The importance of a suitable theoretical model, and in particular basis set, in reproducing experimental data is demonstrated. The DFT theoretical model was extended to platinated base pair step (GG/CC), allowing a comparison to the related compounds cisplatin and oxaliplatin. Adducts of kiteplatin with larger fragments of double-stranded DNA, including tetramer, octamer, and dodecamer, were studied theoretically using hybrid quantum mechanics/molecular mechanics methods. Structural parameters of all the base-paired models were evaluated and binding energies calculated in gas phase and in solution; these are compared across the series and also with the related complexes cisplatin and oxaliplatin, thus revealing insights into how kiteplatin binds to DNA and similarities and differences between this and related compounds.


Subject(s)
Antineoplastic Agents/chemistry , DNA, Single-Stranded/chemistry , Organoplatinum Compounds/chemistry , Base Pairing , Computer Simulation , DNA Damage , Models, Molecular
14.
Article in English | MEDLINE | ID: mdl-38660951

ABSTRACT

In recent years, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have exhibited such intriguing light absorption properties to be contemplated as promising candidates for photocatalytic conversions. However, for effective photocatalysis, the light harvesting system needs to be stable under the reaction conditions propaedeutic to a specific transformation. Unlike photoinduced oxidative reaction pathways, photoreductions with LHP NCs are challenging due to their scarce compatibility with common hole scavengers like amines and alcohols. In this contribution, it is investigated the potential of CsPbBr3 NCs protected by a suitably engineered bidentate ligand for the photoreduction of quinone species. Using an in situ approach for the construction of the passivating agent and a halide excess environment, quantum-confined nanocubes (average edge length = 6.0 ± 0.8 nm) are obtained with a low ligand density (1.73 ligand/nm2) at the NC surface. The bifunctional adhesion of the engineered ligand boosts the colloidal stability of the corresponding NCs, preserving their optical properties also in the presence of an amine excess. Despite their relatively short exciton lifetime (τAV = 3.7 ± 0.2 ns), these NCs show an efficient fluorescence quenching in the presence of the selected electron accepting quinones (1,4-naphthoquinone, 9,10-phenanthrenequinone, and 9,10-anthraquinone). All of these aspects demonstrate the suitability of the NCs for an efficient photoreduction of 1,4-naphthoquinone to 1,4-dihydroxynaphthalene in the presence of triethylamine as a hole scavenger. This chemical transformation is impracticable with conventionally passivated LHP NCs, thereby highlighting the potential of the surface functionalization in this class of nanomaterials for exploring new photoinduced reactivities.

15.
Inorg Chem ; 52(5): 2393-403, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23414056

ABSTRACT

The initial aim of the present work was the synthesis of the axial disuccinato Pt(IV) derivative of [PtCl2(cis-1,4-DACH)] (Kiteplatin, 1 in Figure 1 ) (DACH = diaminocyclohexane), which contains an isomeric form of the diamine ligand present in oxaliplatin (i.e., 1R,2R-DACH). The interest in this compound stems from its activity on several cisplatin and oxaliplatin-resistant cell lines. Oxidation of 1 with hydrogen peroxide affords cis,trans,cis-[PtCl2(OH)2(cis-1,4-DACH)] (2) which was treated with succinic anhydride in suitable solvents. To our surprise, in dimethylformamide (DMF) (50-70 °C or under light irradiation) or in dimethylsulfoxide (DMSO) (under light irradiation) the formation of the succinato complex cis,trans,cis-[PtCl2{OC(O)CH2CH2C(O)OH}2(cis-1,4-DACH)] (3) was accompanied by reduction to 1. It was found that solvolysis of 2 and formation of a µ-oxo dinuclear species (5) is the key step. The dinuclear species can then undergo reduction to a 1:1 mixture of 1 and 2 with concomitant elimination of oxygen (1/2 O2 in the form of H2O2). The whole process is fostered by heat and/or light, which could favor solvolysis of 2 as well as decomposition of hydrogen peroxide to water and oxygen so preventing the reoxidation of 1 to 2. Because of its peculiar behavior, compound 5 could be exploited also for the development of a technology for water splitting.


Subject(s)
Cyclohexanes/chemistry , Organoplatinum Compounds/chemistry , Succinates/chemistry , Temperature , Magnetic Resonance Spectroscopy , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Oxidation-Reduction , Photochemical Processes
16.
Pharmacol Rep ; 75(6): 1588-1596, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796435

ABSTRACT

BACKGROUND: Multifunctional thiosemicarbazones (TSCs) able to bind sigma receptors and chelate metals are considered as a promising avenue for the treatment of pancreatic cancer due to the encouraging results obtained on in vitro and in vivo models. Here, we assessed the biochemical mechanism of these TSCs also on lung (A549) and breast (MCF7) cancer cells. METHODS: The density of sigma-2 receptors in normal (BEAS-2B and MCF10A) and in lung and breast (A549 and MCF7) cancer cells was evaluated by flow cytometry. In these cells, cytotoxicity (MTT assay) and activation of ER- and mitochondria-dependent cell death pathways (by spectrofluorimetric assays to measure Caspases 3/7/9; qRT-PCR detection of GRP78, ATF6, IRE1, PERK; MitoSOX, DCFDA-AM and JC-1 staining), induced by the TSCs FA4, MLP44, PS3 and ACThio1, were evaluated. RESULTS: FA4 and PS3 exerted more potent cytotoxicity than MLP44 and ACThio1 in all cancer cell lines, where the density of sigma-2 receptors was higher than in normal cells. Remarkably, FA4 promoted ER- and mitochondria-dependent cell death pathways in both cell models, whereas the other TSCs had variable, cell-dependent effects on the activation of the two proapoptotic pathways. CONCLUSIONS: Our data suggest that FA4 is a promising compound that deserves to be further studied for lung and breast cancer treatment. However, the other multifunctional TSCs also hold promise for the development of therapies towards a personalized medicine approach. Indeed, the presence of the sigma-2 receptor-targeting moiety would lead to a more specific tumor delivery embracing the characteristics of individual tumor types.


Subject(s)
Antineoplastic Agents , Carcinoma , Lung Neoplasms , Receptors, sigma , Thiosemicarbazones , Humans , Receptors, sigma/metabolism , Apoptosis , Thiosemicarbazones/pharmacology , Antineoplastic Agents/therapeutic use , Lung Neoplasms/drug therapy , Lung/metabolism , Cell Line, Tumor
17.
Dalton Trans ; 52(18): 6117-6128, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37066998

ABSTRACT

Treatment of primary bone malignancies comprises surgery, radiotherapy, chemotherapy, and analgesics. Platinum-based chemotherapeutics, such as cisplatin, are commonly used for the treatment of bone cancer but, despite their success, outcomes are limited by toxicity and resistance. Recently, dinuclear Pt complexes with a bridging geminal bisphosphonate ligand proved to be endowed with selective accumulation in bone tumors or metastases leading to improved efficacy and reduced systemic toxicity. Further improvement could be expected by the use of a bisphosphonate ligand with intrinsic pharmacological activity such as zoledronic acid (ZL). In the present work is reported the synthesis and full characterization of the dinuclear Pt(II) complex [{cis-Pt(NH3)2}2(ZL)]HSO4 which combines two drugs with antitumor activity, cisplatin and zoledronic acid. Both drugs, individually, are already approved by the U.S. Food and Drug Administration and the European Medicinal Agency for clinical use. The in vitro cytotoxicity of the new Pt(II)-ZL complex has been tested against a panel of human tumor cell lines.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Humans , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Zoledronic Acid/pharmacology , Pharmaceutical Preparations , Ligands , Bone Neoplasms/drug therapy , Cell Line, Tumor , Diphosphonates/pharmacology
18.
Chemistry ; 18(48): 15439-48, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23065963

ABSTRACT

To determine how the Y-family translesion DNA polymerase η (Polη) processes lesions remains fundamental to understanding the molecular origins of the mutagenic translesion bypass. We utilized model systems employing a DNA double-base lesion derived from 1,2-GG intrastrand cross-links of a new antitumor Pt(II) complex containing a bulky carrier ligand, namely [PtCl(2)(cis-1,4-dach)] (DACH=diaminocyclohexane). The catalytic efficiency of Polη for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the 1,2-GG cross-link was markedly reduced by the DACH carrier ligand. This reduced efficiency of Polη to incorporate the correct dCTP could be due to a more extensive DNA unstacking and deformation of the minor groove induced in the DNA by the cross-link of bulky [PtCl(2)(cis-1,4-dach)]. The major products of the bypass of this double-base lesion produced by [PtCl(2)(cis-1,4-dach)] by Polη resulted from misincorporation of dATP opposite the platinated G residues. The results of the present work support the thesis that this misincorporation could be due to sterical effects of the bulkier 1,4-DACH ligand hindering the formation of the Polη-DNA-incoming nucleotide complex. Calorimetric analysis suggested that thermodynamic factors may contribute to the forces that governed enhanced incorporation of the incorrect dATP by Polη as well.


Subject(s)
Antineoplastic Agents/pharmacology , DNA-Directed DNA Polymerase/metabolism , DNA/chemical synthesis , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Calorimetry , Catalysis , Cisplatin/pharmacology , DNA/biosynthesis , DNA/chemistry , DNA/genetics , DNA Damage , DNA-Directed DNA Polymerase/classification , Humans , Molecular Structure , Organoplatinum Compounds/chemistry , Thermodynamics
19.
ChemMedChem ; 17(1): e202100593, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34727402

ABSTRACT

The interaction of metallodrugs with proteins influences their mechanism of action and side effects. In the case of platinum drugs, copper transporters modulate sensitivity and resistance to these anticancer agents. To deepen the knowledge of the structural properties underlying the reactivity of platinum drugs with copper transporters, we studied the interaction of kiteplatin and two of its derivatives with the methionine-rich motif of copper importer Ctr1 and with the dithiol motif of the first domain of Menkes ATPase. Furthermore, cellular uptake and cytotoxicity of the three complexes were evaluated in cisplatin-sensitive and -resistant ovarian cancer cells, comparing the data with those of clinically relevant drugs. Reactivity depends on the tightness of the chelate ring formed by the carrier ligands and the nature of the leaving and entering groups. The results highlight the importance of subtle changes in the platinum coordination sphere that affect drug absorption and intracellular fate.


Subject(s)
Antineoplastic Agents/pharmacology , Copper Transporter 1/antagonists & inhibitors , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper Transporter 1/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Structure-Activity Relationship
20.
Dalton Trans ; 50(13): 4663-4672, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33725031

ABSTRACT

The Pt(iv) complexes based on (SP-4-2)-dichlorido(cyclohexane-1,4-diamine)platinum(ii) (kiteplatin) and the histone deacetylase inhibitor 2-(2-propynyl)octanoic acid (POA) were investigated. Since POA contains a chiral carbon, all the possible Pt(iv) isomers were prepared and characterized, and their antiproliferative activity on six cancer cell lines was compared with that of the corresponding Pt(iv) complexes containing the cyclohexane-1R,2R-diamine equatorial ligand. To justify the very good antiproliferative activity (nanomolar IC50), the polarity, lipophilicity, permeability, and cell accumulation of the complexes were studied. Overall, the two series of Pt(iv) complexes showed similar cell penetration properties, being significantly better than that of the Pt(ii) reference compounds. Finally, a representative compound of the whole set of complexes (i.e., that based on cyclohexane-1R,2R-diamine and racemic POA) was tested in vivo on mice bearing Lewis lung carcinoma, showing good tumor growth inhibition with negligible body weight loss.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Organoplatinum Compounds/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Caprylates/chemistry , Caprylates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclohexanes/chemistry , Cyclohexanes/pharmacology , Diamines/chemistry , Diamines/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL