Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Hum Genet ; 136(11-12): 1477-1487, 2017 11.
Article in English | MEDLINE | ID: mdl-29101457

ABSTRACT

The study of genetic variation has been revolutionized by the advent of high-throughput technologies able to determine the complete genomic sequence of thousands of individuals. Understanding the functional relevance of variants is, however, still a difficult task, especially when focusing on non-coding variants. Most of the variants associated with disease by Genome-Wide Association Studies (GWAS) are indeed non-coding, and presumably exert their effects by altering gene regulation. Expression Quantitative Trait Loci (eQTL) studies represent an important step in understanding the functional relevance of regulatory variants. We propose a new strategy to detect and characterize eQTLs, based on the effect of variants on the Total Binding Affinity (TBA) profiles of regulatory regions. Using a large dataset of coupled genome and expression data, we show that TBA-based inference allows the identification of eQTLs not revealed by traditional methods and helps in their interpretation in terms of altered transcription factor binding.


Subject(s)
Gene Expression Regulation , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Regulatory Sequences, Nucleic Acid , Transcription, Genetic , Genomics , Humans
2.
BMC Bioinformatics ; 17(1): 423, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27756200

ABSTRACT

BACKGROUND: Post-transcriptional regulation is a complex mechanism that plays a central role in defining multiple cellular identities starting from a common genome. Modifications in the length of 3'UTRs have been found to play an important role in this context, since alternative 3' UTRs could lead to differences for example in regulation by microRNAs and cellular localization of the transcripts thus altering their fate. RESULTS: We propose a strategy to identify the genes undergoing regulation of 3' UTR length using RNA sequencing data obtained from standard libraries, thus widely applicable to data originally obtained to perform classical differential expression analyses. We decided to exploit previously annotated APA sites from public databases, in contrast with other approaches recently proposed in which the location of the APA site is inferred from the data together with the relative abundance of the isoforms. We demonstrate the reliability of our method by comparing it to the results of other microarray based or specific RNA-seq libraries methods and show that using APA sites databases results in higher sensitivity compared to de novo site prediction approach. CONCLUSIONS: We implemented the algorithm in a Bioconductor package to facilitate its broad usage in the scientific community. The ability of this approach to detect shortening from libraries with a number of reads comparable to that needed for differential expression analyses makes it useful for investigating if alternative polyadenylation is relevant in a certain biological process without requiring specific experimental assays.


Subject(s)
3' Untranslated Regions/genetics , Algorithms , Brain/metabolism , Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Polyadenylation/genetics , RNA, Messenger/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Reproducibility of Results
3.
J Clin Pathol ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350716

ABSTRACT

BACKGROUND: Methylthioadenosine phosphorylase (MTAP) is an essential metabolic enzyme in the purine and methionine salvage pathway. In cancer, MTAP gene copy number loss (MTAP loss) confers a selective dependency on the related protein arginine methyltransferase 5. The impact of MTAP alterations in gastrointestinal (GI) cancers remains unknown although hypothetically druggable. Here, we aim to investigate the prevalence, clinicopathological features and prognosis of MTAP loss GI cancers. METHODS: Cases with MTAP alterations were retrieved from The Cancer Genome Atlas (TCGA) and a real-world cohort of GI cancers profiled by next-generation sequencing. If MTAP alterations other than loss were found, immunohistochemistry was performed. Finally, we set a case-control study to assess MTAP loss prognostic impact. RESULTS: Findings across the TCGA dataset (N=1363 patients) and our cohort (N=508) were consistent. Gene loss was the most common MTAP alteration (9.4%), mostly co-occurring with CDKN2A/B loss (97.7%). Biliopancreatic and gastro-oesophageal cancers had the highest prevalence of MTAP loss (20.5% and 12.7%, respectively), being mostly microsatellite stable (99.2%). In colorectal cancer, MTAP loss was rare (1.1%), while most MTAP alterations were mutations (5/7, 71.4%); among the latter, only MTAP-CDKN2B truncation led to protein loss, thus potentially actionable. MTAP loss did not confer worse prognosis. CONCLUSIONS: MTAP alterations are found in 5%-10% of GI cancers, most frequently biliopancreatic and gastro-oesophageal. MTAP loss is the most common alteration, identified almost exclusively in MSS, CDKN2A/B loss, upper-GI cancers. Other MTAP alterations were found in colorectal cancer, but unlikely to cause protein loss and drug susceptibility.

4.
Cell Rep Med ; 5(2): 101376, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38228147

ABSTRACT

The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.


Subject(s)
Colorectal Neoplasms , Escherichia coli , Peptides , Polyketides , Humans , Irinotecan/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Retrospective Studies , DNA/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology
5.
Mol Oncol ; 18(6): 1460-1485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468448

ABSTRACT

Multiple strategies are continuously being explored to expand the drug target repertoire in solid tumors. We devised a novel computational workflow for transcriptome-wide gene expression outlier analysis that allows the systematic identification of both overexpression and underexpression events in cancer cells. Here, it was applied to expression values obtained through RNA sequencing in 226 colorectal cancer (CRC) cell lines that were also characterized by whole-exome sequencing and microarray-based DNA methylation profiling. We found cell models displaying an abnormally high or low expression level for 3533 and 965 genes, respectively. Gene expression abnormalities that have been previously associated with clinically relevant features of CRC cell lines were confirmed. Moreover, by integrating multi-omics data, we identified both genetic and epigenetic alternations underlying outlier expression values. Importantly, our atlas of CRC gene expression outliers can guide the discovery of novel drug targets and biomarkers. As a proof of concept, we found that CRC cell lines lacking expression of the MTAP gene are sensitive to treatment with a PRMT5-MTA inhibitor (MRTX1719). Finally, other tumor types may also benefit from this approach.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Transcriptome , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Transcriptome/genetics , Gene Expression Profiling , DNA Methylation/genetics
6.
Cell Death Dis ; 14(2): 96, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759506

ABSTRACT

Telomere maintenance is necessary to maintain cancer cell unlimited viability. However, the mechanisms maintaining telomere length in colorectal cancer (CRC) have not been extensively investigated. Telomere maintenance mechanisms (TMM) include the re-expression of telomerase or alternative lengthening of telomeres (ALT). ALT is genetically associated with somatic alterations in alpha-thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) genes. Cells displaying ALT present distinctive features including C-circles made of telomeric DNA, long and heterogenous telomeric tracts, and telomeric DNA co-localized with promyelocytic leukemia (PML) bodies forming so-called ALT-associated PML bodies (APBs). Here, we identified mutations in ATRX and/or DAXX genes in an extensive collection of CRC samples including 119 patient-derived organoids (PDOs) and 232 established CRC cell lines. C-circles measured in CRC PDOs and cell lines showed low levels overall. We also observed that CRC PDOs and cell lines did not display a significant accumulation of APBs or long telomeres with no appreciable differences between wild-type and mutated ATRX/DAXX samples. Overall, our extensive analyses indicate that CRC is not prone to engage ALT, even when carrying genetic lesions in ATRX and/or DAXX, and support the notion that ATRX/DAXX genomic footprints are not reliable predictors of ALT.


Subject(s)
Colorectal Neoplasms , Intellectual Disability , Telomerase , alpha-Thalassemia , Humans , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , Telomere Homeostasis/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Telomerase/genetics , Telomerase/metabolism , Mutation/genetics , Cell Line , Telomere/genetics , Telomere/metabolism , Organoids/metabolism , Colorectal Neoplasms/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
7.
J Exp Clin Cancer Res ; 41(1): 266, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056393

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/ß-catenin pathway. METHODS: After performing expression studies of NLGN1 on human CRC samples, in this paper we used in vitro and in vivo approaches to study CRC cells extravasation and metastasis formation capabilities. At the molecular level, the functional link between APC and NLGN1 in the cancer context was studied. RESULTS: Here we show that NLGN1 is expressed in human colorectal tumors, including clusters of aggressive migrating (budding) single tumor cells and vascular emboli. We found that NLGN1 promotes CRC cells crossing of an endothelial monolayer (i.e. Trans-Endothelial Migration or TEM) in vitro, as well as cell extravasation/lung invasion and differential organ metastatization in two mouse models. Mechanistically, NLGN1 promotes APC localization to the cell membrane and co-immunoprecipitates with some isoforms of this protein stimulates ß-catenin translocation to the nucleus, upregulates mesenchymal markers and WNT target genes and induces an "EMT phenotype" in CRC cell lines CONCLUSIONS: In conclusion, we have uncovered a novel modulator of CRC aggressiveness which impacts on a critical pathogenetic pathway of this disease, and may represent a novel therapeutic target, with the added benefit of carrying over substantial knowledge from the neurobiology field.


Subject(s)
Cell Adhesion Molecules, Neuronal , Colorectal Neoplasms , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Line, Tumor , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Mice , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
8.
Clin Cancer Res ; 28(17): 3874-3889, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35881546

ABSTRACT

PURPOSE: Genomic instability is a hallmark of cancer and targeting DNA damage response (DDR) is emerging as a promising therapeutic strategy in different solid tumors. The effectiveness of targeting DDR in colorectal cancer has not been extensively explored. EXPERIMENTAL DESIGN: We challenged 112 cell models recapitulating the genomic landscape of metastatic colorectal cancer with ATM, ATR, CHK1, WEE1, and DNA-PK inhibitors, in parallel with chemotherapeutic agents. We focused then on ATR inhibitors (ATRi) and, to identify putative biomarkers of response and resistance, we analyzed at multiple levels colorectal cancer models highly sensitive or resistant to these drugs. RESULTS: We found that around 30% of colorectal cancers, including those carrying KRAS and BRAF mutations and unresponsive to targeted agents, are sensitive to at least one DDR inhibitor. By investigating potential biomarkers of response to ATRi, we found that ATRi-sensitive cells displayed reduced phospho-RPA32 foci at basal level, while ATRi-resistant cells showed increased RAD51 foci formation in response to replication stress. Lack of ATM and RAD51C expression was associated with ATRi sensitivity. Analysis of mutational signatures and HRDetect score identified a subgroup of ATRi-sensitive models. Organoids derived from patients with metastatic colorectal cancer recapitulated findings obtained in cell lines. CONCLUSIONS: In conclusion, a subset of colorectal cancers refractory to current therapies could benefit from inhibitors of DDR pathways and replication stress. A composite biomarker involving phospho-RPA32 and RAD51 foci, lack of ATM and RAD51C expression, as well as analysis of mutational signatures could be used to identify colorectal cancers likely to respond to ATRi.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Damage , DNA Replication , DNA-Activated Protein Kinase/genetics , Humans , Protein Kinase Inhibitors/pharmacology
9.
Nat Commun ; 13(1): 7551, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477656

ABSTRACT

The pro-tumourigenic role of epithelial TGFß signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFß signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFß signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFß signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFß signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.


Subject(s)
Apoptosis , Transforming Growth Factor beta , Humans , Apoptosis/genetics
10.
Methods Mol Biol ; 2082: 39-49, 2020.
Article in English | MEDLINE | ID: mdl-31849006

ABSTRACT

In the last decades, thousands of common genetic variants have been associated with human diseases by genome-wide association studies (GWAS). However, the functional interpretation of GWAS hits is usually nontrivial, especially because most of them lay outside the coding genome. These noncoding variants presumably exert their effect by altering gene expression levels; therefore, expression quantitative trait loci (eQTL) mapping analyses represent an important step in understanding their functional relevance and identifying the target genes. Here we describe an alternative strategy for the detection of eQTL that takes into account the combined effect of genetic variants within regulatory regions and leverages the idea that changes in gene expression often are the consequence of the alteration of transcription factor (TF) binding.


Subject(s)
Binding Sites , Chromosome Mapping , Quantitative Trait Loci , Transcription Factors/metabolism , Gene Expression Regulation , Genetic Variation , Genome-Wide Association Study/methods , Humans , Protein Binding
11.
Front Genet ; 10: 714, 2019.
Article in English | MEDLINE | ID: mdl-31475030

ABSTRACT

In the last decades, genome-wide association studies (GWAS) have uncovered tens of thousands of associations between common genetic variants and complex diseases. However, these statistical associations can rarely be interpreted functionally and mechanistically. As the majority of the disease-associated variants are located far from coding sequences, even the relevant gene is often unclear. A way to gain insight into the relevant mechanisms is to study the genetic determinants of intermediate molecular phenotypes, such as gene expression and transcript structure. We propose a computational strategy to discover genetic variants affecting the relative expression of alternative 3' untranslated region (UTR) isoforms, generated through alternative polyadenylation, a widespread posttranscriptional regulatory mechanism known to have relevant functional consequences. When applied to a large dataset in which whole genome and RNA sequencing data are available for 373 European individuals, 2,530 genes with alternative polyadenylation quantitative trait loci (apaQTL) were identified. We analyze and discuss possible mechanisms of action of these variants, and we show that they are significantly enriched in GWAS hits, in particular those concerning immune-related and neurological disorders. Our results point to an important role for genetically determined alternative polyadenylation in affecting predisposition to complex diseases, and suggest new ways to extract functional information from GWAS data.

SELECTION OF CITATIONS
SEARCH DETAIL