Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Appl Microbiol Biotechnol ; 94(3): 719-28, 2012 May.
Article in English | MEDLINE | ID: mdl-22234533

ABSTRACT

Most enzymes involved in tryptophan catabolism via kynurenine formation are highly conserved in Prokaryotes and Eukaryotes. In humans, alterations of this pathway have been related to different pathologies mainly involving the central nervous system. In Bacteria, tryptophan and some of its derivates are important antibiotic precursors. Tryptophan degradation via kynurenine formation involves two different pathways: the eukaryotic kynurenine pathway, also recently found in some bacteria, and the tryptophan-to-anthranilate pathway, which is widespread in microorganisms. The latter produces anthranilate using three enzymes also involved in the kynurenine pathway: tryptophan 2,3-dioxygenase (TDO), kynureninase (KYN), and kynurenine formamidase (KFA). In Streptomyces coelicolor, where it had not been demonstrated which genes code for these enzymes, tryptophan seems to be important for the calcium- dependent antibiotic (CDA) production. In this study, we describe three adjacent genes of S. coelicolor (SCO3644, SCO3645, and SCO3646), demonstrating their involvement in the tryptophan-to-anthranilate pathway: SCO3644 codes for a KFA, SCO3645 for a KYN and SCO3646 for a TDO. Therefore, these genes can be considered as homologous respectively to kynB, kynU, and kynA of other microorganisms and belong to a constitutive catabolic pathway in S. coelicolor, which expression increases during the stationary phase of a culture grown in the presence of tryptophan. Moreover, the S. coelicolor ΔkynU strain, in which SCO3645 gene is deleted, produces higher amounts of CDA compared to the wild-type strain. Overall, these results describe a pathway, which is used by S. coelicolor to catabolize tryptophan and that could be inactivated to increase antibiotic production.


Subject(s)
Arylformamidase/genetics , Hydrolases/genetics , Kynurenine/metabolism , Metabolic Networks and Pathways/genetics , Streptomyces coelicolor/genetics , Tryptophan Oxygenase/genetics , Tryptophan/metabolism , Arylformamidase/metabolism , Hydrolases/metabolism , Streptomyces coelicolor/metabolism , Tryptophan Oxygenase/metabolism
2.
Lett Appl Microbiol ; 41(4): 350-4, 2005.
Article in English | MEDLINE | ID: mdl-16162143

ABSTRACT

AIMS: Characterization of SCP2165, a plasmid identified in the Gram-positive bacterium Streptomyces coelicolor A3(2). METHODS AND RESULTS: Pulsed-field gel electrophoresis (PFGE) of mycelia of a S. coelicolor strain embedded in low melting agarose revealed the presence of a plasmid. Restriction enzyme mapping and sequence analysis of a 2.1 kb fragment revealed that this plasmid could be SCP2. SCP2 and its spontaneous derivative SCP2* are self-transmissible plasmids and have chromosome mobilizing ability (c.m.a.). SCP2* has a c. 1000-fold increased c.m.a. compared with SCP2. Interestingly the plasmid, named SCP2165, shows a c.m.a. from 5x10(-2) to 1x10(-1) which is 50-100-fold higher than that described for crosses involving SCP2*. CONCLUSIONS: SCP2165 is a SCP2 derivative plasmid with the highest c.m.a. so far described for SCP2 derivative plasmids. PFGE, under conditions we used, seems to be a fast way to identify large circular plasmids in Streptomyces strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Further knowledge of the SCP2 family may allow the construction of improved SCP2-derived cloning vectors. SCP2165 could be a potential tool for conjugational transfer of gene clusters between different Streptomyces species.


Subject(s)
Conjugation, Genetic , Plasmids , Streptomyces coelicolor/genetics , Crosses, Genetic , Electrophoresis, Gel, Pulsed-Field , Gene Transfer, Horizontal , Recombination, Genetic , Streptomyces coelicolor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL