Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 54(8): 4912-4921, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32216335

ABSTRACT

Understanding the sorption processes is critical to the successful design and implementation of a variety of technologies in subsurface application. Most transport models assume minimal interactions between adsorbed species and, thus, are unable to accurately describe the formation of adsorbed bilayers. To address this limitation, a two-stage kinetic sorption model is developed and incorporated into a one-dimensional advective-dispersive-reactive transport simulator. The model is evaluated using data obtained from column experiments conducted with a representative polymer [gum arabic (GA)] and a nonionic surfactant [Witconol 2722 (WT)] under a range of experimental conditions. Model simulations demonstrate that the first-stage polymer/surfactant-surface sorption rate is at least 1 order of magnitude greater than the second-stage rate, associated with bilayer formation, indicating that the first-stage reaction is more favorable. The reversibility of the second-stage sorption process is found to be compound-specific, with irreversible sorption observed for GA and prolonged tailing observed for WT. This study demonstrates that the developed two-stage kinetic model is superior to a two-stage equilibrium-based model in its replication of two-leg breakthrough curves observed in core flood experiments; the normalized root-mean-square error between measurement and regressed model simulations was reduced by an average of 41% with the kinetic approach.


Subject(s)
Polymers , Surface-Active Agents , Adsorption , Kinetics , Porosity
2.
Water Res ; 142: 471-479, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29920457

ABSTRACT

Applying silver nanoparticles (nAg) or silver nitrate (AgNO3) to ceramic water filters improves microbiological efficacy, reduces biofilm formation, and protects stored water from recontamination. A challenge in ceramic filter production is adding sufficient silver to achieve these goals without exceeding the maximum recommended silver concentration in drinking water. Silver release is affected by silver type, application method, and influent water chemistry. Despite a lack of data, there is an assumption that chlorinated water should not be used as influent water because it may increase silver elution. Thus, the objective of this work was to systematically evaluate the impact of chlorinated water (0-4 mg/L free chlorine residual, FCR) on silver release from ceramic filter disks painted with casein-coated nAg, painted with AgNO3, or containing fired-in nAg over a range of ionic strength (IS = 0-10 mM as NaNO3) in the presence or absence of natural organic matter (NOM). Influent deionized water containing chlorine increased silver release 2-5-fold compared to controls. However, this effect of chlorine was mitigated at higher IS (≥1 mM) or in the presence of NOM (3 mg C/L). For filter disks painted with nAg or AgNO3, silver release increased with increasing IS (with or without chlorine), and effluent concentrations remained above the World Health Organization (WHO) guideline of 0.1 mg/L even after 30 h (80 pore volumes, PVs) of flow with a background solution of 10 mM NaNO3. Silver speciation (nAg vs. Ag+) was monitored in effluent samples from painted or fired-in nAg filter disks. Results indicated that in general, greater than 90% of the eluted silver was due to Ag+ dissolution rather than nAg release. Additionally, a filter disk prepared with fired-in nAg exhibited a lower % released in the nanoparticle form (nAg = 5% of total Ag in effluent) compared to painted on nAg (nAg = 14% of total Ag in effluent). The findings of this study suggest that chlorinated influent water has minimal impact on silver elution from ceramic filters under simulated natural water conditions, and thus, the recommendation to avoid the use of chlorinated water with ceramic filters is not necessary under most conditions.


Subject(s)
Ceramics/chemistry , Chlorine/chemistry , Metal Nanoparticles/chemistry , Silver Nitrate/chemistry , Silver/chemistry , Halogenation , Osmolar Concentration , Water Purification
3.
J Hazard Mater ; 349: 153-159, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29414747

ABSTRACT

A green chemistry solution is presented for the remediation of heavy hydrocarbon impacted soils. The two-phase recovery system relies on a plant-based biopolymer, which releases hydrocarbons from soil, and polystyrene foam beads, which recover them from solids and water. The efficiency of the process was demonstrated by comparisons with control experiments, where water, biopolymer, or beads alone yielded total petroleum hydrocarbon (TPH) reductions of 25%, 52%, and 58%, respectively, compared to 94% when 1.25 mL of 1% biopolymer and 15 mg beads per gram of soil were agitated for 30 min. Reductions in TPH content were substantial regardless of soil fraction, with removals of 97%, 91%, and 75% from sand, silt, and clay size fractions, respectively. Additionally, treatment efficiency was independent of carbon number, C13 to C43, as demonstrated by reductions in both diesel fuel (C13-C28) and residual-range organics (C25-C43) of ∼90%. Compared to other published polymer- and surfactant-based treatment methods, this system requires less mobilizing agent, sorbent, and mixing time. The remediation process is both efficient and sustainable because the biopolymer is re-useable and sourced from renewable crops and polystyrene beads are obtained from recycled materials.


Subject(s)
Biopolymers/chemistry , Environmental Restoration and Remediation/methods , Hydrocarbons/chemistry , Polystyrenes/chemistry , Soil Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL