Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Med Virol ; 96(4): e29598, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38624044

ABSTRACT

We estimated the dynamics of the neutralizing response against XBB sublineages and T cell response in persons with HIV (PWH) with previous AIDS and/or CD4 < 200/mm3 receiving the bivalent original strain/BA.4-5 booster dose in fall 2022. Samples were collected before the shot (Day 0), 15 days, 3, and 6 months after. PWH were stratified by immunization status: hybrid immunity (HI; vaccination plus COVID-19) versus nonhybrid immunity (nHI; vaccination only). Fifteen days after the booster, 16% and 30% of PWH were nonresponders in terms of anti-XBB.1.16 or anti-EG.5.1 nAbs, respectively. Three months after, a significant waning of anti-XBB.1.16, EG.5.1 and -XBB.1 nAbs was observed both in HI and nHI but nAbs in HI were higher than in nHI. Six months after both HI and nHI individuals displayed low mean levels of anti-XBB.1.16 and EG.5.1 nAbs. Regarding T cell response, IFN-γ values were stable over time and similar in HI and nHI. Our data showed that in PWH, during the prevalent circulation of the XBB.1.16, EG.5.1, and other XBB sublineages, a mRNA bivalent vaccine might not confer broad protection against them. With a view to the 2023/2024 vaccination campaign, the use of the monovalent XBB.1.5 mRNA vaccine should be urgently warranted in PWH to provide adequate protection.


Subject(s)
COVID-19 , HIV Infections , Humans , COVID-19/prevention & control , Immunization Programs , RNA, Messenger , Seasons , mRNA Vaccines , Antibodies, Neutralizing , Antibodies, Viral
2.
J Allergy Clin Immunol ; 151(4): 911-921, 2023 04.
Article in English | MEDLINE | ID: mdl-36758836

ABSTRACT

BACKGROUND: Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE: Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS: We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS: We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS: Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.


Subject(s)
COVID-19 , Lymphopenia , Humans , COVID-19/metabolism , SARS-CoV-2 , Thymus Gland , Lymphopenia/genetics , Patient Acuity
3.
Nanotechnology ; 34(50)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37683622

ABSTRACT

Highly stable and environmentally friendly nitrogen-doped graphite quantum dots consisting of ∼12 layers of graphene, average diameter of ∼7.3 nm, prepared by atmospheric pressure microplasma are reported to have blue emission due to surface states created by nitrogen doping (9 atomic%) and reaction with oxygen. The low-temperature synthesis method requires simple precursors in water, with no annealing or filtration, producing crystalline disc-shaped quantum dots with ∼68% photoluminescence emission quantum yield at 420 nm excitation and that have shown stability for more than one month after the synthesis. The nitrogen doping in the quantum dots mainly occurs in graphitic core as substituted type of doping (63-67 atomic%) and the amount of doping is sufficient to create emissive states without impacting the core structure. The optical and chemical properties do not undergo serious retardation even with re-dispersion suggesting easy applicability for cellular imaging or optoelectronics.

4.
Clin Infect Dis ; 75(1): e552-e563, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35366316

ABSTRACT

BACKGROUND: Data on SARS-CoV-2 vaccine immunogenicity in PLWH are currently limited. Aim of the study was to investigate immunogenicity according to current CD4 T-cell count. METHODS: PLWH on ART attending a SARS-CoV-2 vaccination program, were included in a prospective immunogenicity evaluation after receiving BNT162b2 or mRNA-1273. Participants were stratified by current CD4 T-cell count (poor CD4 recovery, PCDR: <200/mm3; intermediate CD4 recovery, ICDR: 200-500/mm3; high CD4 recovery, HCDR: >500/mm3). RBD-binding IgG, SARS-CoV-2 neutralizing antibodies (nAbs) and IFN-γ release were measured. As control group, HIV-negative healthcare workers (HCWs) were used. FINDINGS: Among 166 PLWH, after 1 month from the booster dose, detectable RBD-binding IgG were elicited in 86.7% of PCDR, 100% of ICDR, 98.7% of HCDR, and a neutralizing titre ≥1:10 elicited in 70.0%, 88.2%, and 93.1%, respectively. Compared to HCDR, all immune response parameters were significantly lower in PCDR. After adjusting for confounders, current CD4 T-cell <200/mm3 significantly predicted a poor magnitude of anti-RDB, nAbs and IFN-γ response. As compared with HCWs, PCDR elicited a consistently reduced immunogenicity for all parameters, ICDR only a reduced RBD-binding antibody response, whereas HCDR elicited a comparable immune response for all parameters. CONCLUSION: Humoral and cell-mediated immune response against SARS-CoV-2 were elicited in most of PLWH, albeit significantly poorer in those with CD4 T-cell <200/mm3 versus those with >500 cell/mm3 and HIV-negative controls. A lower RBD-binding antibody response than HCWs was also observed in PLWH with CD4 T-cell 200-500/mm3, whereas immune response elicited in PLWH with a CD4 T-cell >500/mm3 was comparable to HIV-negative population.


Subject(s)
COVID-19 , HIV Infections , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , CD4-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , HIV , HIV Infections/drug therapy , Humans , Immunity, Cellular , Immunoglobulin G , Lymphocyte Count , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
5.
Nano Lett ; 21(22): 9780-9788, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34735771

ABSTRACT

Tuning optical or magnetic properties of nanoparticles, by addition of impurities, for specific applications is usually achieved at the cost of band gap and work function reduction. Additionally, conventional strategies to develop nanoparticles with a large band gap also encounter problems of phase separation and poor crystallinity at high alloying degree. Addressing the aforementioned trade-offs, here we report Ni-Zn nanoferrites with energy band gap (Eg) of ≈3.20 eV and a work function of ≈5.88 eV. While changes in the magnetoplasmonic properties of the Ni-Zn ferrite were successfully achieved with the incorporation of bismuth ions at different concentrations, there was no alteration of the band gap and work function in the developed Ni-Zn ferrite. This suggests that with the addition of minute impurities to ferrites, independent of their changes in the band gap and work function, one can tune their magnetic and optical properties, which is desired in a wide range of applications such as nanobiosensing, nanoparticle based catalysis, and renewable energy generation using nanotechnology.

6.
Faraday Discuss ; 222(0): 390-404, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32133465

ABSTRACT

The relationship between the crystallization process and opto-electronic properties of silicon quantum dots (Si QDs) synthesized by atmospheric pressure plasmas (APPs) is studied in this work. The synthesis of Si QDs is carried out by flowing silane as a gas precursor in a plasma confined to a submillimeter space. Experimental conditions are adjusted to propitiate the crystallization of the Si QDs and produce QDs with both amorphous and crystalline character. In all cases, the Si QDs present a well-defined mean particle size in the range of 1.5-5.5 nm. Si QDs present optical bandgaps between 2.3 eV and 2.5 eV, which are affected by quantum confinement. Plasma parameters evaluated using optical emission spectroscopy are then used as inputs for a collisional plasma model, whose calculations yield the surface temperature of the Si QDs within the plasma, justifying the crystallization behavior under certain experimental conditions. We measure the ultraviolet-visible optical properties and electronic properties through various techniques, build an energy level diagram for the valence electrons region as a function of the crystallinity of the QDs, and finally discuss the integration of these as active layers of all-inorganic solar cells.

7.
Nanotechnology ; 31(21): 215707, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32155133

ABSTRACT

This paper reports the production of strongly confined ligand-free, defect-free, hydroxy-terminated ZnO quantum dots with a mean diameter of 1.9 nm, by radio frequency atmospheric pressure microplasma. Systematic characterization is performed to understand the surface chemistry of ZnO quantum dots. Photoluminescence studies show strong confinement effect on emission with only ultraviolet (UV) emission without any defect-related visible emission. Emission is again tested after eighteen months and confirms the QDs long-term emission stability. The mechanism responsible for this UV emission is also discussed and originates from OH-related surface terminations.

8.
Langmuir ; 35(13): 4577-4588, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30840476

ABSTRACT

In this work, a room-temperature atmospheric pressure direct-current plasma has been deployed for the one-step synthesis of gold nanoparticle/carboxyl group-functionalized carbon nanotube (AuNP/CNT-COOH) nanohybrids in aqueous solution for the first time. Uniformly distributed AuNPs are formed on the surface of CNT-COOH, without the use of reducing agents or surfactants. The size of the AuNP can be tuned by changing the gold salt precursor concentration. UV-vis, ζ-potential, and X-ray photoelectron spectroscopy suggest that carboxyl surface functional groups on CNTs served as nucleation and growth sites for AuNPs and the multiple potential reaction pathways induced by the plasma chemistry have been elucidated in detail. The nanohybrids exhibit significantly enhanced Raman scattering and photothermal conversion efficiency that are essential for potential multimodal cancer treatment applications.

9.
Nanotechnology ; 30(45): 455603, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31207585

ABSTRACT

This is the first study on the deployment of direct current atmospheric pressure microplasma technique for the single step synthesis of gold nanoparticle/graphene oxide (AuNP/GO) nanocomposites. The nanocomposites were characterized using ultraviolet-visible spectroscopy (UV-vis), x-ray diffraction and x-ray photoelectron spectroscopy and their formation mechanisms have been discussed in detail. Our AuNP/GO nanocomposites are highly biocompatible and have demonstrated surface enhanced Raman scattering (SERS) properties as compared to pure AuNPs and pure GO. Their potential as SERS substrate has been further demonstrated using probe molecules (methylene blue) at different concentrations.

10.
Nano Lett ; 18(9): 5681-5687, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30137994

ABSTRACT

Plasmonic response of free charges confined in nanostructures of plasmonic materials is a powerful means for manipulating the light-material interaction at the nanoscale and hence has influence on various relevant technologies. In particular, plasmonic materials responsive in the mid-infrared range are technologically important as the mid-infrared is home to the vibrational resonance of molecules and also thermal radiation of hot objects. However, the development of the field is practically challenged with the lack of low-loss materials supporting high quality plasmons in this range of the spectrum. Here, we demonstrate that degenerately doped InN nanocrystals (NCs) support tunable and low-loss plasmon resonance spanning the entire midwave infrared range. Modulating free-carrier concentration is achieved by engineering nitrogen-vacancy defects (InN1- x, 0.017 < x < 0.085) in highly degenerate NCs using a nonequilibrium gas-phase growth process. Despite the significant reduction in the carrier mobility relative to intrinsic InN, the mobility in degenerate InN NCs (>60 cm2/(V s)) remains considerably higher than the carrier mobility reported for other materials NCs such as doped metal oxides, chalcogenides, and noble metals. These findings demonstrate feasibility of controlled tuning of infrared plasmon resonances in a low-loss material of III-V compounds and open a gateway to further studies of these materials nanostructures for infrared plasmonic applications.

11.
Phys Chem Chem Phys ; 20(31): 20489-20496, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30043774

ABSTRACT

Here, we have synthesised a range of samples, with the formula (CH3NH3)1-2x(H3NC2H4NH3)xPbI3, with different levels of ethylenediammonium substitution to probe non-stoichiometry at the A-site of the perovskite. A single phase region was identified and is accompanied by a change in photophysical properties. The influence of aliovalent substitution with ethylenediammonium results in a decrease in HOMO level from -5.31 eV for x = 0 to -5.88 eV for x = 0.15.

12.
Nano Lett ; 17(3): 1336-1343, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28139927

ABSTRACT

We demonstrate an entirely new method of nanoparticle chemical synthesis based on liquid droplet irradiation with ultralow (<0.1 eV) energy electrons. While nanoparticle formation via high energy radiolysis or transmission electron microscopy-based electron bombardment is well-understood, we have developed a source of electrons with energies close to thermal which leads to a number of important and unique benefits. The charged species, including the growing nanoparticles, are held in an ultrathin surface reaction zone which enables extremely rapid precursor reduction. In a proof-of-principle demonstration, we obtain small-diameter Au nanoparticles (∼4 nm) with tight control of polydispersity, in under 150 µs. The precursor was almost completely reduced in this period, and the resultant nanoparticles were water-soluble and free of surfactant or additional ligand chemistry. Nanoparticle synthesis rates within the droplets were many orders of magnitude greater than equivalent rates reported for radiolysis, electron beam irradiation, or colloidal chemical synthesis where reaction times vary from seconds to hours. In our device, a stream of precursor loaded microdroplets, ∼15 µm in diameter, were transported rapidly through a cold atmospheric pressure plasma with a high charge concentration. A high electron flux, electron and nanoparticle confinement at the surface of the droplet, and the picoliter reactor volume are thought to be responsible for the remarkable enhancement in nanoparticle synthesis rates. While this approach exhibits considerable potential for scale-up of synthesis rates, it also offers the more immediate prospect of continuous on-demand delivery of high-quality nanomaterials directly to their point of use by avoiding the necessity of collection, recovery, and purification. A range of new applications can be envisaged, from theranostics and biomedical imaging in tissue to inline catalyst production for pollution remediation in automobiles.

13.
Chemphyschem ; 18(9): 1074-1083, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28009938

ABSTRACT

In this paper, we report the one-step synthesis of luminescent carbon nanoparticles (NPs) via laser irradiation of a graphite target in a solvent [H2 O, ethanol, or a 0.008 m aqueous diethylenetriaminepentaacetic acid (DTPA) solution]. This is a simple approach for the fabrication of carbon dots with tunable photoluminescence (PL) that differs from other preparation methods, as no post-passivation step is required. The unfocused beam of the second harmonic (wavelength 532 nm) of the Nd:YAG laser was used in our experiments. The sizes of the prepared NPs were mainly distributed in the range of 1-8 nm with an average value of 3 nm. Carbon NPs of different inner structure were prepared: hexagonal diamond phase in aqueous DTPA solution, orthorhombic carbon phase in ethanol, and amorphous carbon in water. The synthesized carbon NPs have strong luminescence in the visible region, which makes them attractive for numerous biological applications. The photoluminescence of the synthesized NPs was investigated at different excitation wavelengths, from 260 to 450 nm. The highest intensities of the emission bands were detected for an excitation wavelength of 400 nm.


Subject(s)
Alcohols/chemistry , Carbon/chemistry , Lasers , Nanoparticles/chemistry , Pentetic Acid/chemistry , Water/chemistry , Luminescence , Molecular Structure , Optical Phenomena , Solutions
15.
J Phys Chem Lett ; 15(15): 4185-4190, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38597921

ABSTRACT

This study examines the effect of quantum confinement and surface orientations on the electronic properties of NiO quantum dots. It compares NiO nanocrystals produced via atmospheric-pressure microplasma and femtosecond laser (fs-laser) ablation in water, finding that both methods yield quantum-confined nanocrystals with a defined face-centered cubic lattice. Notably, fs-laser synthesis generates crystalline nanocrystals from both crystalline and amorphous targets. While the electronic properties, i.e., energy of the highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO), of microplasma-synthesized NiO nanocrystals are consistent with the literature, the electronic characteristics of NiO nanocrystals produced by a fs-laser, particularly the high-lying LUMO level, are unusual for NiO quantum dots. Supported by density functional theory calculations, we show that the observed level positions are related to the different polar and nonpolar faces of the nanocrystal surface.

16.
Small Methods ; 8(1): e2300710, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997223

ABSTRACT

An atmospheric-pressure plasma system is developed and is used to treat carbon nanotube assemblies, producing a hybrid carbon-zinc structure. This system is integrated into a floating-catalyst chemical vapor deposition furnace used for the synthesis of macroscopic assemblies of carbon nanotubes to allow for the in-line, continuous, and single-step production of nano-composite materials. Material is deposited from a sacrificial zinc wire in the form of nanoparticles and can coat the surface of the individual carbon nanotubes as they form. Additionally, it is found that the deposited materials penetrate further into the carbon nanotube matrix than a comparable post-synthesis deposition, improving the uniformity of the material through the thickness. Thus, a single-step metal-based coating and carbon nanotube synthesis process which can form the basis of production scale manufacturing of metal-carbon nanotube composite materials with an atmospheric-pressure plasma system are demonstrated.

17.
ACS Appl Mater Interfaces ; 16(10): 12339-12352, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38425008

ABSTRACT

Progress in electrochemical water-splitting devices as future renewable and clean energy systems requires the development of electrodes composed of efficient and earth-abundant bifunctional electrocatalysts. This study reveals a novel flexible and bifunctional electrode (NiO@CNTR) by hybridizing macroscopically assembled carbon nanotube ribbons (CNTRs) and atmospheric plasma-synthesized NiO quantum dots (QDs) with varied loadings to demonstrate bifunctional electrocatalytic activity for stable and efficient overall water-splitting (OWS) applications. Comparative studies on the effect of different electrolytes, e.g., acid and alkaline, reveal a strong preference for alkaline electrolytes for the developed NiO@CNTR electrode, suggesting its bifunctionality for both HER and OER activities. Our proposed NiO@CNTR electrode demonstrates significantly enhanced overall catalytic performance in a two-electrode alkaline electrolyzer cell configuration by assembling the same electrode materials as both the anode and the cathode, with a remarkable long-standing stability retaining ∼100% of the initial current after a 100 h long OWS run, which is attributed to the "synergistic coupling" between NiO QD catalysts and the CNTR matrix. Interestingly, the developed electrode exhibits a cell potential (E10) of only 1.81 V with significantly low NiO QD loading (83 µg/cm2) compared to other catalyst loading values reported in the literature. This study demonstrates a potential class of carbon-based electrodes with single-metal-based bifunctional catalysts that opens up a cost-effective and large-scale pathway for further development of catalysts and their loading engineering suitable for alkaline-based OWS applications and green hydrogen generation.

18.
Virology ; 592: 109993, 2024 04.
Article in English | MEDLINE | ID: mdl-38244323

ABSTRACT

The 2022 global spread of Monkeypox Virus (MPXV) underlined the need to investigate safe-handling procedures of clinical and research samples. Here we evaluated the efficiency in reducing MPXV infectious titer of Triton X-100 (0.1 and 0.2%), UV-C irradiation (15 or 30 min), and heat (56 °C 30 min or 70 °C 5 min). The treatment of MPXV at 70 °C resulted in the strongest decrease of MPXV infectious titer (5.4 Log TCID50/mL), 56 °C and UV-C had a lighter impact (3.9 and 4.3Log), Triton X-100 was less efficient (1.8-2.5Log). Notably, SARS-CoV-2 was much more susceptible to Triton X-100 (4.0 Log decrease). UV-C had the highest impact on MPXV DNA detection by PCR (2.2-4.3 Ct value increase); protein detection by ELISA was dramatically impaired by heating. Overall, UV-C and heating were more effective in lowering MPXV infectious titer but their impact on nucleic acids or protein detection assays must be considered.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Octoxynol , SARS-CoV-2
19.
Adv Sci (Weinh) ; : e2402235, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965704

ABSTRACT

Exsolution of metal nanoparticles (NPs) on perovskite oxides has been demonstrated as a reliable strategy for producing catalyst-support systems. Conventional exsolution requires high temperatures for long periods of time, limiting the selection of support materials. Plasma direct exsolution is reported at room temperature and atmospheric pressure of Ni NPs from a model A-site deficient perovskite oxide (La0.43Ca0.37Ni0.06Ti0.94O2.955). Plasma exsolution is carried out within minutes (up to 15 min) using a dielectric barrier discharge configuration both with He-only gas as well as with He/H2 gas mixtures, yielding small NPs (<30 nm diameter). To prove the practical utility of exsolved NPs, various experiments aimed at assessing their catalytic performance for methanation from synthesis gas, CO, and CH4 oxidation are carried out. Low-temperature and atmospheric pressure plasma exsolution are successfully demonstrated and suggest that this approach could contribute to the practical deployment of exsolution-based stable catalyst systems.

20.
Sci Rep ; 13(1): 4684, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949161

ABSTRACT

We discuss the electronic properties of quantum-confined nanocrystals. In particular, we show how, starting from the discrete molecular states of small nanocrystals, an approximate band structure (quasi-band structure) emerges with increasing particle size. Finite temperature is found to broaden the discrete states in energy space forming even for nanocrystals in the quantum-confinement regime quasi-continuous bands in k-space. This bands can be, to a certain extend, interpreted along the lines of standard band structure theory, while taking also finite size and surface effects into account. We discuss this on various prototypical nanocrystal systems.

SELECTION OF CITATIONS
SEARCH DETAIL