Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS Biol ; 19(9): e3001400, 2021 09.
Article in English | MEDLINE | ID: mdl-34529650

ABSTRACT

Purkinje cell (PC) discharge, the only output of cerebellar cortex, involves 2 types of action potentials, high-frequency simple spikes (SSs) and low-frequency complex spikes (CSs). While there is consensus that SSs convey information needed to optimize movement kinematics, the function of CSs, determined by the PC's climbing fiber input, remains controversial. While initially thought to be specialized in reporting information on motor error for the subsequent amendment of behavior, CSs seem to contribute to other aspects of motor behavior as well. When faced with the bewildering diversity of findings and views unraveled by highly specific tasks, one may wonder if there is just one true function with all the other attributions wrong? Or is the diversity of findings a reflection of distinct pools of PCs, each processing specific streams of information conveyed by climbing fibers? With these questions in mind, we recorded CSs from the monkey oculomotor vermis deploying a repetitive saccade task that entailed sizable motor errors as well as small amplitude saccades, correcting them. We demonstrate that, in addition to carrying error-related information, CSs carry information on the metrics of both primary and small corrective saccades in a time-specific manner, with changes in CS firing probability coupled with changes in CS duration. Furthermore, we also found CS activity that seemed to predict the upcoming events. Hence PCs receive a multiplexed climbing fiber input that merges complementary streams of information on the behavior, separable by the recipient PC because they are staggered in time.


Subject(s)
Action Potentials , Purkinje Cells/physiology , Saccades , Animals , Macaca mulatta , Male , Movement
2.
J Neurophysiol ; 123(6): 2217-2234, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32374226

ABSTRACT

One of the most powerful excitatory synapses in the brain is formed by cerebellar climbing fibers, originating from neurons in the inferior olive, that wrap around the proximal dendrites of cerebellar Purkinje cells. The activation of a single olivary neuron is capable of generating a large electrical event, called "complex spike," at the level of the postsynaptic Purkinje cell, comprising of an initial large-amplitude spike followed by a long polyphasic tail of small-amplitude spikelets. Several ideas discussing the role of the cerebellum in motor control are centered on these complex spike events. However, these events, only occurring one to two times per second, are extremely rare relative to Purkinje cell "simple spikes" (standard sodium-potassium action potentials). As a result, drawing conclusions about their functional role has been very challenging. In fact, because standard spike sorting approaches cannot fully handle the polyphasic shape of complex spike waveforms, the only safe way to avoid omissions and false detections has been to rely on visual inspection by experts, which is both tedious and, because of attentional fluctuations, error prone. Here we present a deep learning algorithm for rapidly and reliably detecting complex spikes. Our algorithm, utilizing both action potential and local field potential signals, not only detects complex spikes much faster than human experts, but it also reliably provides complex spike duration measures similar to those of the experts. A quantitative comparison of our algorithm's performance to both classic and novel published approaches addressing the same problem reveals that it clearly outperforms these approaches.NEW & NOTEWORTHY Purkinje cell "complex spikes", fired at perplexingly low rates, play a crucial role in cerebellum-based motor learning. Careful interpretations of these spikes require manually detecting them, since conventional online or offline spike sorting algorithms are optimized for classifying much simpler waveform morphologies. We present a novel deep learning approach for identifying complex spikes, which also measures additional relevant neurophysiological features, with an accuracy level matching that of human experts yet with very little time expenditure.


Subject(s)
Deep Learning , Electrophysiological Phenomena/physiology , Purkinje Cells/physiology , Action Potentials/physiology , Animals , Macaca mulatta , Male
3.
Eur J Neurosci ; 48(4): 1976-1989, 2018 08.
Article in English | MEDLINE | ID: mdl-29972715

ABSTRACT

Current theories discussing the role of the cerebellum have been consistently pointing towards the concept of motor learning. The unavailability of a structure for motor learning able to use information on past errors to change future movements should cause consistent metrical deviations and an inability to correct them; however, it should not boost "motor noise." However, dysmetria, a loss of endpoint precision and an increase in endpoint variability ("motor noise") of goal-directed movements is the central aspect of cerebellar ataxia. Does the prevention of dysmetria or "motor noise" by the healthy cerebellum tell us anything about its normal function? We hypothesize that the healthy cerebellum is able to prevent dysmetria by adjusting movement duration such as to compensate changes in movement velocity. To address this question, we studied fast goal-directed index finger movements in patients with global cerebellar degeneration and in healthy subjects. We demonstrate that healthy subjects are able to maintain endpoint precision despite continuous fluctuations in movement velocity because they are able to adjust the overall movement duration in a fully compensatory manner ("velocity-duration trade-off"). We furthermore provide evidence that this velocity-duration trade-off accommodated by the healthy cerebellum is based on a priori information on the future movement velocity. This ability is lost in cerebellar disease. We suggest that the dysmetria observed in cerebellar patients is a direct consequence of the loss of a cerebellum-based velocity-duration trade-off mechanism that continuously fine-tunes movement durations using information on the expected velocity of the upcoming movement.


Subject(s)
Biomechanical Phenomena/physiology , Cerebellar Ataxia/physiopathology , Fingers/physiology , Motor Activity/physiology , Psychomotor Performance/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Time Factors
5.
Nat Commun ; 14(1): 2548, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137897

ABSTRACT

Both the environment and our body keep changing dynamically. Hence, ensuring movement precision requires adaptation to multiple demands occurring simultaneously. Here we show that the cerebellum performs the necessary multi-dimensional computations for the flexible control of different movement parameters depending on the prevailing context. This conclusion is based on the identification of a manifold-like activity in both mossy fibers (MFs, network input) and Purkinje cells (PCs, output), recorded from monkeys performing a saccade task. Unlike MFs, the PC manifolds developed selective representations of individual movement parameters. Error feedback-driven climbing fiber input modulated the PC manifolds to predict specific, error type-dependent changes in subsequent actions. Furthermore, a feed-forward network model that simulated MF-to-PC transformations revealed that amplification and restructuring of the lesser variability in the MF activity is a pivotal circuit mechanism. Therefore, the flexible control of movements by the cerebellum crucially depends on its capacity for multi-dimensional computations.


Subject(s)
Cerebellar Cortex , Cerebellum , Biomechanical Phenomena , Purkinje Cells , Neurons
6.
Annu Rev Vis Sci ; 5: 247-268, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31299168

ABSTRACT

The cerebellar cortex is a crystal-like structure consisting of an almost endless repetition of a canonical microcircuit that applies the same computational principle to different inputs. The output of this transformation is broadcasted to extracerebellar structures by way of the deep cerebellar nuclei. Visually guided eye movements are accommodated by different parts of the cerebellum. This review primarily discusses the role of the oculomotor part of the vermal cerebellum [the oculomotor vermis (OMV)] in the control of visually guided saccades and smooth-pursuit eye movements. Both types of eye movements require the mapping of retinal information onto motor vectors, a transformation that is optimized by the OMV, considering information on past performance. Unlike the role of the OMV in the guidance of eye movements, the contribution of the adjoining vermal cortex to visual motion perception is nonmotor and involves a cerebellar influence on information processing in the cerebral cortex.


Subject(s)
Cerebellar Vermis/physiology , Motion Perception/physiology , Saccades/physiology , Visual Perception/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL