ABSTRACT
Gold nanoparticles-enabled intracellular surface-enhanced Raman spectroscopy (SERS) provides a sensitive and promising technique for single cell analysis. Compared with spherical gold nanoparticles, gold nanoflowers, i.e., flower-shaped gold nanostructures, can produce a stronger SERS signal. Current exploration of gold nanoflowers for intracellular SERS has been considerably limited by the difficulties in preparation, as well as background signal and cytotoxicity arising from the surfactant capping layer. Recently, we have developed a facile and surfactant-free method for fabricating hollow-channel gold nanoflowers (HAuNFs) with great single-particle SERS activity. In this paper, we investigate the cellular uptake and cytotoxicity of our HAuNFs using a RAW 264.7 macrophage cell line, and have observed effective cellular internalization and low cytotoxicity. We have further engineered our HAuNFs into SERS-active tags, and demonstrated the functionality of the obtained tags as trimodal nanoprobes for dark-field and fluorescence microscopy imaging, together with intracellular SERS.
Subject(s)
Cytoplasm/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Single-Cell Analysis , Cytoplasm/metabolism , Gold/chemistry , Spectrum Analysis, Raman , Surface Plasmon Resonance , Surface PropertiesABSTRACT
BACKGROUND: The use of linked healthcare data in research has the potential to make major contributions to knowledge generation and service improvement. However, using healthcare data for secondary purposes raises legal and ethical concerns relating to confidentiality, privacy and data protection rights. Using a linkage and anonymisation approach that processes data lawfully and in line with ethical best practice to create an anonymous (non-personal) dataset can address these concerns, yet there is no set approach for defining all of the steps involved in such data flow end-to-end. We aimed to define such an approach with clear steps for dataset creation, and to describe its utilisation in a case study linking healthcare data. METHODS: We developed a data flow protocol that generates pseudonymous datasets that can be reversibly linked, or irreversibly linked to form an anonymous research dataset. It was designed and implemented by the Comprehensive Patient Records (CPR) study in Leeds, UK. RESULTS: We defined a clear approach that received ethico-legal approval for use in creating an anonymous research dataset. Our approach used individual-level linkage through a mechanism that is not computer-intensive and was rendered irreversible to both data providers and processors. We successfully applied it in the CPR study to hospital and general practice and community electronic health record data from two providers, along with patient reported outcomes, for 365,193 patients. The resultant anonymous research dataset is available via DATA-CAN, the Health Data Research Hub for Cancer in the UK. CONCLUSIONS: Through ethical, legal and academic review, we believe that we contribute a defined approach that represents a framework that exceeds current minimum standards for effective pseudonymisation and anonymisation. This paper describes our methods and provides supporting information to facilitate the use of this approach in research.
Subject(s)
Biomedical Research/methods , Confidentiality , Data Anonymization , Biomedical Research/ethics , Datasets as Topic , Electronic Data Processing/ethics , Electronic Data Processing/methods , Electronic Health Records/organization & administration , Humans , Information Storage and Retrieval , United KingdomABSTRACT
With the advent of cheap rapid methods for whole-genome SNP genotyping and the completion of the Human Genome Project, mapping disease loci has become primarily a bioinformatic rather than a laboratory problem. Here, we describe DominantMapper, a computer program that implements a rule-based analysis algorithm for the detection of dominant disease loci in either a small number of nuclear families or a single large nuclear family. To demonstrate its utility, we present the successful analysis of two pedigrees in which the affected individuals carry either APC or TSPAN12 mutations.
Subject(s)
Adenomatous Polyposis Coli/genetics , Chromosome Mapping/methods , Genes, Dominant/genetics , Nuclear Family , Polymorphism, Single Nucleotide/genetics , Software , Adult , Algorithms , Child , Computational Biology/methods , Female , Genes, APC , Genetic Predisposition to Disease , Genotype , Humans , Male , Oligonucleotide Array Sequence Analysis , Pedigree , Tetraspanins/genetics , Time FactorsABSTRACT
Ketohexokinase (KHK, also known as fructokinase) initiates the pathway through which most dietary fructose is metabolized. Very little is known about the cellular localization of this enzyme. Alternatively spliced KHK-C and KHK-A mRNAs are known, but the existence of the KHK-A protein isoform has not been demonstrated in vivo. Using antibodies to KHK for immunohistochemistry and Western blotting of rodent tissues, including those from mouse knockouts, coupled with RT-PCR assays, we determined the distribution of the splice variants. The highly expressed KHK-C isoform localized to hepatocytes in the liver and to the straight segment of the proximal renal tubule. In both tissues, cytoplasmic and nuclear staining was observed. The KHK-A mRNA isoform was observed exclusively in a range of other tissues, and by Western blotting, the presence of endogenous immunoreactive KHK-A protein was shown for the first time, proving that the KHK-A mRNA is translated into KHK-A protein in vivo, and supporting the suggestion that this evolutionarily conserved isoform is physiologically functional. However, the low levels of KHK-A expression prevented its immunohistochemical localization within these tissues. Our results highlight that the use of in vivo biological controls (tissues from knockout animals) is required to distinguish genuine KHK immunoreactivity from experimental artifact.
Subject(s)
Fructokinases/metabolism , Fructose/metabolism , Alternative Splicing , Animals , Blotting, Western , Cell Line, Tumor , Escherichia coli/metabolism , Female , Fructokinases/genetics , Humans , Immunohistochemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Mice, Knockout , Organ Specificity , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Species SpecificityABSTRACT
BACKGROUND/AIM: Platforms using valid molecular targets can provide concurrent diagnostic and treatment (theragnostic) options in perihilar cholangiocarcinoma (PHC). Neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker in the biliary secretome of PHC. Its potential as a theragnostic target and its prognostic significance in this cancer was, therefore, explored. MATERIALS AND METHODS: In-vitro studies were used to determine NGAL localization in several cholangiocarcinoma cell lines. Tissue expression of NGAL was quantified in PHC resection cases from 2000-2010 by immunohistochemistry. RESULTS: NGAL was expressed in the majority of tested cell lines and localized to their membranes. Tissues from 54 patients underwent NGAL immunohistochemistry. Median tumoral NGAL expression was significantly higher than that in matched liver controls (p<0.001). Higher NGAL tumor expression was associated with nodal metastasis (p=0.021), although no significant association with survival was observed. CONCLUSION: The expression and localization of NGAL in PHC make it a valid candidate biomarker for exploitation in theragnostic platforms.
Subject(s)
Bile Duct Neoplasms/diagnosis , Biomarkers, Tumor , Klatskin Tumor/diagnosis , Lipocalin-2/physiology , Neoplasm Recurrence, Local/diagnosis , Adult , Aged , Aged, 80 and over , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Female , Humans , Immunohistochemistry , Klatskin Tumor/metabolism , Klatskin Tumor/pathology , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , PrognosisABSTRACT
BACKGROUND: Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. RESULTS: We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. CONCLUSION: Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.
Subject(s)
DNA/genetics , Organic Chemicals/chemistry , Polymerase Chain Reaction/methods , Benzothiazoles , Cell Line, Tumor , DNA/chemistry , Diamines , Female , Fluorescence , GTP Phosphohydrolases/genetics , Gene Amplification/genetics , Gene Deletion , Gene Rearrangement/genetics , Humans , Male , Oncogene Proteins/genetics , Optic Atrophy/genetics , Quinolines , Receptors, Antigen, T-Cell/genetics , Reproducibility of Results , Sensitivity and Specificity , Trans-Activators , Transcription Factors/genetics , Zinc Finger Protein GLI1ABSTRACT
BACKGROUND: Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. METHODS: Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). RESULTS: A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. CONCLUSIONS: This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts.
Subject(s)
Cerebral Palsy/genetics , Glutamate Decarboxylase/genetics , Mutation, Missense/genetics , Stiff-Person Syndrome/genetics , Viral Proteins/genetics , Chromosome Mapping , Contig Mapping , Female , Homozygote , Humans , Male , Microsatellite Repeats , Pedigree , Plant Viral Movement Proteins , Sequence Analysis, ProteinABSTRACT
Colorectal cancer (CRC) is a major cause of cancer-related mortality. A contributing factor to the progression of this disease is sporadic or hereditary mutation of the adenomatous polyposis coli (APC) gene, a negative regulator of the Wnt signalling pathway. Inherited mutations in APC cause the disorder familial adenomatous polyposis (FAP), which leads to CRC development in early adulthood. However, the gene is also disrupted in some 60% of sporadic cancers. Restoration of functional APC may slow the growth of CRC by negatively regulating proliferation-associated genes such as c-myc. Therefore, we have cloned the cDNA of the APC tumour suppressor gene into a replication competent Herpesvirus saimiri (HVS)-based vector to assess APC gene delivery in SW480 and SW620 CRC cell lines. Our results demonstrate that full length APC protein was efficiently expressed from the HVS vector and that transgene expression inhibited proliferation of both the SW480 and the metastatic SW620 cancer cell lines. Moreover, a sustained effect could be observed for at least 8 weeks after initial infection in SW480 cells. In addition, monolayer wounding assays showed a marked reduction in proliferation and migration in HVS-GFP-APC infected cells. We believe that this is the first instance of infectious delivery and APC cDNA expression from a virus-based vector.
Subject(s)
Colorectal Neoplasms/genetics , Genes, APC , Genetic Vectors/genetics , Herpesvirus 2, Saimiriine/genetics , Animals , Aotidae , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/metabolism , Gene Expression , Gene Expression Regulation, Neoplastic , Gene Order , Gene Transfer Techniques , HCT116 Cells , Humans , Transduction, Genetic , TransgenesABSTRACT
PURPOSE: To investigate whether three consanguineous families from the Punjab province of Pakistan, with affected members with recessively inherited congenital cataract microcornea with corneal opacity, are genetically homogeneous. METHODS: An ophthalmic examination was performed on each family member to establish the diagnosis. The two largest families were analyzed by homozygosity mapping using SNP arrays. Linkage was confirmed using polymorphic microsatellite markers, and logarithm of odds (LOD) scores were calculated. Candidate genes were prioritized using the ENDEAVOUR program. RESULTS: Autosomal recessive congenital cataract-microcornea with corneal opacity mapped to chromosome 10cen for family MEP57 and to either chromosomes 2ptel or 20p for family MEP60. For MEP57, the refined interval was 36.8 Mb flanked by D10S1208 (35.3 Mb) and D10S676 (72.1 Mb). For MEP60, the interval containing the mutation was either 6.7 Mb from the telomere of chromosome 2 to marker D2S281 or 3.8 Mb flanked by D20S906 (1.5 Mb) and D20S835 (5.3 Mb). Maximum multipoint LOD scores of 3.09, 1.94, and 3.09 were calculated at D10S567, D2S281, and D20S473 for families MEP57 and MEP60. Linkage to these loci was excluded for family MEP68. SLC4A11 was excluded as a candidate gene for the observed phenotype in MEP60. CONCLUSIONS: The authors have identified two new loci, one on chromosome 10cen and the other on 2ptel or 20p, that are associated with recessively inherited congenital cataract-microcornea with corneal opacity. This phenotype is genetically heterogeneous in the Pakistani population. Further genetic studies of this kind, combined with a detailed phenotypic description, will contribute to more precise classification criteria for anterior segment disease.
Subject(s)
Corneal Opacity/genetics , DNA/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease , Adolescent , Cataract/congenital , Cataract/genetics , Cataract/pathology , Child , Cornea/pathology , Corneal Diseases/congenital , Corneal Diseases/genetics , Corneal Diseases/pathology , Corneal Opacity/congenital , Corneal Opacity/pathology , Female , Homozygote , Humans , Male , Pakistan , Pedigree , Sequence Analysis, DNAABSTRACT
Herpesvirus saimiri (HVS) ORF 57 is homologous to genes identified in all classes of herpesviruses. We have previously shown that ORF 57 encodes a multifunctional protein, responsible for both transactivation and repression of viral gene expression at a post-transcriptional level. This suggests that the ORF 57 protein shares some functional similarities with the herpes simplex virus IE63/ICP27 and Epstein-Barr virus Mta proteins. However, little is known about the functional domains responsible for the properties of ORF 57 due to the limited homology shared between these proteins. In this report, we have identified the functional domains responsible for transactivation and repression by the ORF 57 protein. We demonstrate that the carboxy terminus is required for ORF 57 transactivation, repression and an intense SC-35 nuclear spotting. This region contains two highly conserved motifs amongst its homologues, a zinc finger-like motif and a highly hydrophobic domain. We further show that the hydrophobic domain is required for transactivation and is also involved in nuclear localization of the ORF 57 protein, whereas the zinc finger-like domain is required for transactivation, repression and the intense SC-35 nuclear spotting.
Subject(s)
Gene Expression Regulation, Viral , Genes, Viral , Herpesvirus 2, Saimiriine/genetics , Repressor Proteins/genetics , Trans-Activators/genetics , Transcriptional Activation , Viral Proteins , Amino Acid Sequence , Animals , Aotidae , Base Sequence , Cells, Cultured , DNA Mutational Analysis , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Protein Processing, Post-Translational , Quantitative Structure-Activity Relationship , Reverse Transcriptase Polymerase Chain Reaction , Zinc Fingers/geneticsABSTRACT
OBJECTIVE: To evaluate synovial fluid (SF) for the presence of mesenchymal progenitor cells (MPCs), to compare SF MPCs with bone marrow (BM) MPCs, and to enumerate these cells in both inflammatory arthritis and osteoarthritis (OA). METHODS: SF from 100 patients with arthritis (53 rheumatoid arthritis [RA], 20 OA, and 27 other arthropathies) was evaluated. To establish multipotentiality, polyclonal and single cell-derived cultures of SF fibroblasts were examined by standard and quantitative differentiation assays. Their phenotype before and after expansion was determined by multiparameter flow cytometry. A colony-forming unit-fibroblast assay was used for SF MPC enumeration. RESULTS: Regardless of the nature of the arthritis, both polyclonal and single cell-derived cultures of SF fibroblasts possessed trilineage mesenchymal differentiation potentials. The number of MPCs in a milliliter of SF was higher in OA (median 37) than in RA (median 2) (P < 0.00001). No significant differences in MPC numbers were found between early and established RA (median 3 and 2 cells/ml, respectively). Culture-expanded SF and BM MPCs had the same phenotype (negative for CD45 and positive for D7-FIB, CD13, CD105, CD55, and CD10). Rare, uncultured SF fibroblasts were CD45(low) and expressed low-affinity nerve growth factor receptor, similar to in vivo BM MPCs. CONCLUSION: Our findings prove the presence of rare tripotential MPCs, at the single-cell level, in the SF of patients with arthritis. SF MPCs are clonogenic and multipotential fibroblasts that, despite the pathologic environment within a diseased joint, have a phenotype similar to that of uncultured BM MPCs. The higher prevalence of MPCs in OA SF suggests their likely origin from disrupted joint structures. These findings could determine the role of MPCs in the pathogenesis of inflammatory arthritis, together with their role in attempted joint regeneration in degenerative arthritis, which has yet to be established.
Subject(s)
Arthritis/pathology , Mesenchymal Stem Cells/pathology , Multipotent Stem Cells/pathology , Synovial Fluid , Arthritis, Rheumatoid/pathology , Bone Marrow Cells , Cell Count , Cell Differentiation , Cell Line , Cells, Cultured , Colony-Forming Units Assay , Fibroblasts/pathology , Humans , Immunophenotyping , Joint Diseases/pathology , Osteoarthritis/pathology , PhenotypeABSTRACT
OBJECTIVE: There is an increased interest in rheumatology in mesenchymal progenitor/stem cells (MPCs) and their roles in rheumatic diseases, but little is known about the phenotype of these cells in vivo. The aim of this study was to isolate and characterize human bone marrow (BM) MPCs. METHODS: Fluorescence microscopy was used to identify putative MPCs among adherent BM cells. To purify them, a positive selection with antifibroblast microbeads was used, combined with fluorescence-activated cell sorting (FACS) for microbead+,CD45(low) cells. A more detailed phenotype of these cells was determined using 4-color flow cytometry, and standard chondrogenic, osteogenic, and adipogenic assays were used to investigate their differentiation potentials. RESULTS: Putative MPCs microscopically identified as large, fibroblast-like, D7-FIB+ cells were purified using positive selection with D7-FIB-conjugated (antifibroblast) microbeads followed by FACS for specifically bound microbead+,CD45(low) cells. These cells represented 0.01% of mononuclear cells in the BM. They were uniformly positive for CD105, LNGFR, HLA-DR, CD10, CD13, CD90, STRO-1, and bone morphogenetic protein receptor type IA (BMPRIA) and were negative for CD14, CD34, CD117, and CD133. Only cells with this phenotype could proliferate and produce adherent cell monolayers capable of chondrogenic, osteogenic, and adipogenic differentiation. D7-FIB- cells in the BM lacked any MPC activity. Uncultured skin fibroblasts had a phenotype similar to that of BM MPCs, but were negative for LNGFR, STRO-1, HLA-DR, and BMPRIA. CONCLUSION: This study shows the distinct phenotype, morphology, and method of isolation of BM MPCs. The findings may have implications for defining the physiologic roles of MPCs in arthritis, bone diseases, and joint regeneration.
Subject(s)
Bone Marrow Cells/metabolism , Cell Separation , Mesoderm/cytology , Mesoderm/metabolism , Stem Cells/metabolism , Adolescent , Adult , Biomarkers , Bone Marrow Cells/cytology , Cell Differentiation , Cell Line , Child , Child, Preschool , Colony-Forming Units Assay , Fibroblasts/physiology , Flow Cytometry/methods , Humans , Microspheres , Middle Aged , Phenotype , Skin/cytology , Stem Cells/cytologyABSTRACT
Cytogenetic evidence, in the form of deletions and balanced translocations, points to the existence of a locus on 2q32-q33, for which haploinsufficiency results in isolated cleft palate (CPO). Here we show by high-resolution FISH mapping of two de novo CPO-associated translocations involving 2q32-q33 that one breakpoint interrupts the transcription unit of the gene encoding the DNA-binding protein SATB2 (formerly KIAA1034). The breakpoint in the other translocation is located 130 kb 3' to the SATB2 polyadenylation signal, within a conserved region of non-coding DNA. The SATB2 gene is transcribed in a telomeric to centromeric direction and lies in a gene-poor region of 2q32-q33; the nearest confirmed gene is 1.26 Mb centromeric to the SATB2 polyadenylation signal. SATB2-encoding transcripts are assembled from 11 exons that span 191 kb of genomic DNA. They encode a protein of 733 amino acids that has two CUT domains and a homeodomain and shows a remarkable degree of evolutionary conservation, with only three amino acid substitutions between mouse and human. This protein belongs to the same family as SATB1, a nuclear matrix-attachment region binding protein implicated in transcriptional control and control of chromatin remodelling. There are also sequence similarities to the Drosophila protein DVE. Whole mount in situ hybridization to mouse embryos shows site- and stage-specific expression of SATB2 in the developing palate. Despite the strong evidence supporting an important role for SATB2 in palate development, mutation analysis of 70 unrelated patients with CPO did not reveal any coding region variants.