Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
EMBO Rep ; 23(9): e54195, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35801407

ABSTRACT

Nuclear receptors are transcription factors with important functions in a variety of physiological and pathological processes. Targeting glucocorticoid receptor (GR) activity using glucocorticoids is a cornerstone in the treatment of patients with T cell acute lymphoblastic leukemia (T-ALL), and resistance to GC-induced cell death is associated with poor outcome and a high risk for relapse. Next to ligand-binding, heterodimerization with other transcription factors presents an important mechanism for the regulation of GR activity. Here, we describe a GC-induced direct association of the Liver Receptor Homolog-1 (LRH-1) with the GR in the nucleus, which results in reciprocal inhibition of transcriptional activity. Pharmacological and molecular interference with LRH-1 impairs proliferation and survival in T-ALL and causes a profound sensitization to GC-induced cell death, even in GC-resistant T-ALL. Our data illustrate that direct interaction between GR and LRH-1 critically regulates glucocorticoid sensitivity in T-ALL opening up new perspectives for developing innovative therapeutic approaches to treat GC-resistant T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Cytoplasmic and Nuclear , Receptors, Glucocorticoid , Apoptosis , Glucocorticoids/pharmacology , Humans , Metabolism, Inborn Errors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/genetics , Transcription Factors
2.
Haematologica ; 108(5): 1244-1258, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36325888

ABSTRACT

Persistence of residual disease after induction chemotherapy is a strong predictor of relapse in acute lymphoblastic leukemia (ALL). The bone marrow microenvironment may support escape from treatment. Using three-dimensional fluorescence imaging of ten primary ALL xenografts we identified sites of predilection in the bone marrow for resistance to induction with dexamethasone, vincristine and doxorubicin. We detected B-cell precursor ALL cells predominantly in the perisinusoidal space at early engraftment and after chemotherapy. The spatial distribution of T-ALL cells was more widespread with contacts to endosteum, nestin+ pericytes and sinusoids. Dispersion of T-ALL cells in the bone marrow increased under chemotherapeutic pressure. A subset of slowly dividing ALL cells was transiently detected upon shortterm chemotherapy, but not at residual disease after chemotherapy, challenging the notion that ALL cells escape treatment by direct induction of a dormant state in the niche. These lineage-dependent differences point to niche interactions that may be more specifically exploitable to improve treatment.


Subject(s)
Burkitt Lymphoma , Leukemia, Biphenotypic, Acute , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Bone Marrow , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Burkitt Lymphoma/drug therapy , Tumor Microenvironment
3.
Blood ; 129(11): e26-e37, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28122742

ABSTRACT

Drug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material. Stromal coculture did not prevent leukemia cell cycle activity, but a specific sensitivity profile to cell cycle-related drugs identified samples with higher cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with refractory relapses, individual patterns of marked drug resistance and exceptional responses to new agents of immediate clinical relevance were detected. The BCL2-inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL) subsets, including MLL-AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs), predicting in vivo activity as a single agent and in combination with dexamethasone and vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentration values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission. Thus, drug profiling captures disease-relevant features and unexpected sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop drug repurposing strategies for patients with urgent medical needs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cells, Cultured , Coculture Techniques , Heterografts , Humans , Mesenchymal Stem Cells/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
4.
Blood Adv ; 4(19): 4823-4833, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33027529

ABSTRACT

Despite major advances in the treatment of patients with acute lymphoblastic leukemia in the last decades, refractory and/or relapsed disease remains a clinical challenge, and relapsed leukemia patients have an exceedingly dismal prognosis. Dysregulation of apoptotic cell death pathways is a leading cause of drug resistance; thus, alternative cell death mechanisms, such as necroptosis, represent an appealing target for the treatment of high-risk malignancies. We and other investigators have shown that activation of receptor interacting protein kinase 1 (RIP1)-dependent apoptosis and necroptosis by second mitochondria derived activator of caspase mimetics (SMs) is an attractive antileukemic strategy not currently exploited by standard chemotherapy. However, the underlying molecular mechanisms that determine sensitivity to SMs have remained elusive. We show that tumor necrosis factor receptor 2 (TNFR2) messenger RNA expression correlates with sensitivity to SMs in primary human leukemia. Functional genetic experiments using clustered regularly interspaced short palindromic repeats/Cas9 demonstrate that TNFR2 and TNFR1, but not the ligand TNF-α, are essential for the response to SMs, revealing a ligand-independent interplay between TNFR1 and TNFR2 in the induction of RIP1-dependent cell death. Further potential TNFR ligands, such as lymphotoxins, were not required for SM sensitivity. Instead, TNFR2 promotes the formation of a RIP1/TNFR1-containing death signaling complex that induces RIP1 phosphorylation and RIP1-dependent apoptosis and necroptosis. Our data reveal an alternative paradigm for TNFR2 function in cell death signaling and provide a rationale to develop strategies for the identification of leukemias with vulnerability to RIP1-dependent cell death for tailored therapeutic interventions.


Subject(s)
Leukemia , Receptors, Tumor Necrosis Factor, Type II , Apoptosis , Caspases , Humans , Leukemia/drug therapy , Leukemia/genetics , Necrosis , Nuclear Pore Complex Proteins , RNA-Binding Proteins , Receptors, Tumor Necrosis Factor, Type II/genetics
5.
Blood Cancer J ; 10(6): 72, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591499

ABSTRACT

Despite rapid progress in genomic profiling in acute lymphoblastic leukemia (ALL), identification of actionable targets and prediction of response to drugs remains challenging. To identify specific vulnerabilities in ALL, we performed a drug screen using primary human ALL samples cultured in a model of the bone marrow microenvironment combined with high content image analysis. Among the 2487 FDA-approved compounds tested, anthelmintic agents of the class of macrocyclic lactones exhibited potent anti-leukemia activity, similar to the already known anti-leukemia agents currently used in induction chemotherapy. Ex vivo validation in 55 primary ALL samples of both precursor B cell and T-ALL including refractory relapse cases confirmed strong anti-leukemia activity with IC50 values in the low micromolar range. Anthelmintic agents increased intracellular chloride levels in primary leukemia cells, inducing mitochondrial outer membrane depolarization and cell death. Supporting the notion that simultaneously targeting cell death machineries at different angles may enhance the cell death response, combination of anthelmintic agents with the BCL-2 antagonist navitoclax or with the chemotherapeutic agent dexamethasone showed synergistic activity in primary ALL. These data reveal anti-leukemia activity of anthelmintic agents and support exploiting drug repurposing strategies to identify so far unrecognized anti-cancer agents with potential to eradicate even refractory leukemia.


Subject(s)
Anthelmintics/pharmacology , Antineoplastic Agents/pharmacology , Drug Repositioning , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Anthelmintics/therapeutic use , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Drug Resistance, Neoplasm , Humans , Mice, SCID , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects
6.
Blood Adv ; 4(17): 4052-4064, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32853382

ABSTRACT

Most relapses of acute lymphoblastic leukemia (ALL) occur in patients with a medium risk (MR) for relapse on the Associazione Italiana di Ematologia e Oncologia Pediatrica and Berlin-Frankfurt-Münster (AIEOP-BFM) ALL protocol, based on persistence of minimal residual disease (MRD). New insights into biological features that are associated with MRD are needed. Here, we identify the glycosylphosphatidylinositol-anchored cell surface protein vanin-2 (VNN2; GPI-80) by charting the cell surface proteome of MRD very high-risk (HR) B-cell precursor (BCP) ALL using a chemoproteomics strategy. The correlation between VNN2 transcript and surface protein expression enabled a retrospective analysis (ALL-BFM 2000; N = 770 cases) using quantitative polymerase chain reaction to confirm the association of VNN2 with MRD and independent prediction of worse outcome. Using flow cytometry, we detected VNN2 expression in 2 waves, in human adult bone marrow stem and progenitor cells and in the mature myeloid compartment, in line with proposed roles for fetal hematopoietic stem cells and inflammation. Prospective validation by flow cytometry in the ongoing clinical trial (AIEOP-BFM 2009) identified 10% (103/1069) of VNN2+ BCP ALL patients at first diagnosis, primarily in the MRD MR (48/103, 47%) and HR (37/103, 36%) groups, across various cytogenetic subtypes. We also detected frequent mutations in epigenetic regulators in VNN2+ ALLs, including histone H3 methyltransferases MLL2, SETD2, and EZH2 and demethylase KDM6A. Inactivation of the VNN2 gene did not impair leukemia repopulation capacity in xenografts. Taken together, VNN2 marks a cellular state of increased resistance to chemotherapy that warrants further investigations. Therefore, this marker should be included in diagnostic flow cytometry panels.


Subject(s)
Drug Resistance, Neoplasm , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Amidohydrolases/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , B-Lymphocytes , Cell Adhesion Molecules , Child , Drug Resistance, Neoplasm/genetics , GPI-Linked Proteins , Hematopoietic Stem Cells , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prospective Studies , Retrospective Studies
7.
Cancer Cell ; 36(6): 630-644.e9, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31735627

ABSTRACT

The chimeric transcription factor TCF3-HLF defines an incurable acute lymphoblastic leukemia subtype. Here we decipher the regulome of endogenous TCF3-HLF and dissect its essential transcriptional components and targets by functional genomics. We demonstrate that TCF3-HLF recruits HLF binding sites at hematopoietic stem cell/myeloid lineage associated (super-) enhancers to drive lineage identity and self-renewal. Among direct targets, hijacking an HLF binding site in a MYC enhancer cluster by TCF3-HLF activates a conserved MYC-driven transformation program crucial for leukemia propagation in vivo. TCF3-HLF pioneers the cooperation with ERG and recruits histone acetyltransferase p300 (EP300), conferring susceptibility to EP300 inhibition. Our study provides a framework for targeting driving transcriptional dependencies in this fatal leukemia.


Subject(s)
E1A-Associated p300 Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Basic-Leucine Zipper Transcription Factors/genetics , DNA-Binding Proteins/genetics , Humans , Translocation, Genetic
8.
EMBO Mol Med ; 10(12)2018 12.
Article in English | MEDLINE | ID: mdl-30389682

ABSTRACT

We compared 24 primary pediatric T-cell acute lymphoblastic leukemias (T-ALL) collected at the time of initial diagnosis and relapse from 12 patients and 24 matched patient-derived xenografts (PDXs). DNA methylation profile was preserved in PDX mice in 97.5% of the promoters (ρ = 0.99). Similarly, the genome-wide chromatin accessibility (ATAC-Seq) was preserved remarkably well (ρ = 0.96). Interestingly, both the ATAC regions, which showed a significant decrease in accessibility in PDXs and the regions hypermethylated in PDXs, were associated with immune response, which might reflect the immune deficiency of the mice and potentially the incomplete interaction between murine cytokines and human receptors. The longitudinal approach of this study allowed an observation that samples collected from patients who developed a type 1 relapse (clonal mutations maintained at relapse) preserved their genomic composition; whereas in patients who developed a type 2 relapse (subset of clonal mutations lost at relapse), the preservation of the leukemia's composition was more variable. In sum, this study underlines the remarkable genomic stability, and for the first time documents the preservation of the epigenomic landscape in T-ALL-derived PDX models.


Subject(s)
Gene Expression Regulation , Heterografts , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Humans , Longitudinal Studies , Mice , Neoplasm Transplantation , Recurrence
9.
Sci Transl Med ; 8(339): 339ra70, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27194728

ABSTRACT

More precise treatment strategies are urgently needed to decrease toxicity and improve outcomes for treatment-refractory leukemia. We used ex vivo drug response profiling of high-risk, relapsed, or refractory acute lymphoblastic leukemia (ALL) cases and identified a subset with exquisite sensitivity to small-molecule mimetics of the second mitochondria-derived activator of caspases (SMAC) protein. Potent ex vivo activity of the SMAC mimetic (SM) birinapant correlated with marked in vivo antileukemic effects, as indicated by delayed engraftment, decreased leukemia burden, and prolonged survival of xenografted mice. Antileukemic activity was dependent on simultaneous execution of apoptosis and necroptosis, as demonstrated by functional genomic dissection with a multicolored lentiCRISPR approach to simultaneously disrupt multiple genes in patient-derived ALL. SM specifically targeted receptor-interacting protein kinase 1 (RIP1)-dependent death, and CRISPR-mediated disruption of RIP1 completely blocked SM-induced death yet had no impact on the response to standard antileukemic agents. Thus, SM compounds such as birinapant circumvent escape from apoptosis in leukemia by activating a potent dual RIP1-dependent apoptotic and necroptotic cell death, which is not exploited by current therapy. Ex vivo drug activity profiling could provide important functional diagnostic information to identify patients who may benefit from targeted treatment with birinapant in early clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Dipeptides/pharmacology , Indoles/pharmacology , Necrosis/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Apoptosis Regulatory Proteins , Cell Line, Tumor , Drug Synergism , Humans , Inhibitor of Apoptosis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitochondrial Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Nat Genet ; 47(9): 1020-1029, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26214592

ABSTRACT

TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.


Subject(s)
Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Coculture Techniques , Cohort Studies , DNA Mutational Analysis , Drug Resistance, Neoplasm , Female , Gene Expression , Genetic Association Studies , Genomics , Humans , Immunoglobulin Light Chains, Surrogate/genetics , Inhibitory Concentration 50 , Kaplan-Meier Estimate , Male , Mice, Inbred NOD , Mice, SCID , Mutation , Oncogene Proteins, Fusion/metabolism , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Sequence Deletion , Xenograft Model Antitumor Assays
12.
Oncotarget ; 5(22): 11501-12, 2014 Nov 30.
Article in English | MEDLINE | ID: mdl-25415224

ABSTRACT

Interactions with the bone marrow microenvironment are essential for leukemia survival and disease progression. We developed an imaging-based RNAi platform to identify protective cues from bone marrow derived mesenchymal stromal cells (MSC) that promote survival of primary acute lymphoblastic leukemia (ALL) cells. Using a candidate gene approach, we detected distinct responses of individual ALL cases to RNA interference with stromal targets. The strongest effects were observed when interfering with solute carrier family 3 member 2 (SLC3A2) expression, which forms the cystine transporter xc- when associated with SLC7A11. Import of cystine and metabolism to cysteine by stromal cells provides the limiting substrate to generate and maintain glutathione in ALL. This metabolic interaction reduces oxidative stress in ALL cells that depend on stromal xc-. Indeed, cysteine depletion using cysteine dioxygenase resulted in leukemia cell death. Thus, functional evaluation of intercellular interactions between leukemia cells and their microenvironment identifies a selective dependency of ALL cells on stromal metabolism for a relevant subgroup of cases, providing new opportunities to develop more personalized approaches to leukemia treatment.


Subject(s)
Cysteine/metabolism , Cytokines/metabolism , Gene Expression Regulation, Leukemic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , RNA Interference , Amino Acid Transport System y+/metabolism , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Cell Death , Cell Survival , Coculture Techniques , Disease Progression , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Humans , Leukemia/metabolism , Mesenchymal Stem Cells/cytology , Oxidative Stress , Reactive Oxygen Species/metabolism , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL