Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Infect Dis ; 222(1): 17-25, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32296837

ABSTRACT

Public health preparedness for coronavirus (CoV) disease 2019 (COVID-19) is challenging in the absence of setting-specific epidemiological data. Here we describe the epidemiology of seasonal CoVs (sCoVs) and other cocirculating viruses in the West of Scotland, United Kingdom. We analyzed routine diagnostic data for >70 000 episodes of respiratory illness tested molecularly for multiple respiratory viruses between 2005 and 2017. Statistical associations with patient age and sex differed between CoV-229E, CoV-OC43, and CoV-NL63. Furthermore, the timing and magnitude of sCoV outbreaks did not occur concurrently, and coinfections were not reported. With respect to other cocirculating respiratory viruses, we found evidence of positive, rather than negative, interactions with sCoVs. These findings highlight the importance of considering cocirculating viruses in the differential diagnosis of COVID-19. Further work is needed to establish the occurrence/degree of cross-protective immunity conferred across sCoVs and with COVID-19, as well as the role of viral coinfection in COVID-19 disease severity.


Subject(s)
Betacoronavirus , Coronavirus 229E, Human/genetics , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/genetics , Coronavirus OC43, Human/genetics , Pandemics , Pneumonia, Viral/epidemiology , Seasons , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , Coinfection , Coronavirus Infections/virology , Female , Humans , Infant , Male , Middle Aged , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Scotland/epidemiology , Young Adult
2.
Euro Surveill ; 24(31)2019 Aug.
Article in English | MEDLINE | ID: mdl-31387673

ABSTRACT

BackgroundIn the United Kingdom (UK), in recent influenza seasons, children are offered a quadrivalent live attenuated influenza vaccine (LAIV4), and eligible adults mainly trivalent inactivated vaccine (TIV).AimTo estimate the UK end-of-season 2017/18 adjusted vaccine effectiveness (aVE) and the seroprevalence in England of antibodies against influenza viruses cultured in eggs or tissue.MethodsThis observational study employed the test-negative case-control approach to estimate aVE in primary care. The population-based seroprevalence survey used residual age-stratified samples.ResultsInfluenza viruses A(H3N2) (particularly subgroup 3C.2a2) and B (mainly B/Yamagata/16/88-lineage, similar to the quadrivalent vaccine B-virus component but mismatched to TIV) dominated. All-age aVE was 15% (95% confidence interval (CI): -6.3 to 32) against all influenza; -16.4% (95% CI: -59.3 to 14.9) against A(H3N2); 24.7% (95% CI: 1.1 to 42.7) against B and 66.3% (95% CI: 33.4 to 82.9) against A(H1N1)pdm09. For 2-17 year olds, LAIV4 aVE was 26.9% (95% CI: -32.6 to 59.7) against all influenza; -75.5% (95% CI: -289.6 to 21) against A(H3N2); 60.8% (95% CI: 8.2 to 83.3) against B and 90.3% (95% CI: 16.4 to 98.9) against A(H1N1)pdm09. For ≥ 18 year olds, TIV aVE against influenza B was 1.9% (95% CI: -63.6 to 41.2). The 2017 seroprevalence of antibody recognising tissue-grown A(H3N2) virus was significantly lower than that recognising egg-grown virus in all groups except 15-24 year olds.ConclusionsOverall aVE was low driven by no effectiveness against A(H3N2) possibly related to vaccine virus egg-adaption and a new A(H3N2) subgroup emergence. The TIV was not effective against influenza B. LAIV4 against influenza B and A(H1N1)pdm09 was effective.


Subject(s)
Disease Outbreaks/prevention & control , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza, Human/prevention & control , Vaccines, Attenuated/administration & dosage , Vaccines, Inactivated/administration & dosage , Adolescent , Adult , Aged , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Middle Aged , Population Surveillance , Primary Health Care , Seasons , Sentinel Surveillance , Seroepidemiologic Studies , United Kingdom/epidemiology , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology , Young Adult
3.
Euro Surveill ; 23(11)2018 03.
Article in English | MEDLINE | ID: mdl-29560854

ABSTRACT

Scotland observed an unusual influenza A(H3N2)-dominated 2017/18 influenza season with healthcare services under significant pressure. We report the application of the moving epidemic method (MEM) to virology data as a tool to predict the influenza peak activity period and peak week of swab positivity in the current season. This novel MEM application has been successful locally and is believed to be of potential use to other countries for healthcare planning and building wider community resilience.


Subject(s)
Influenza, Human/epidemiology , Patient Acceptance of Health Care/statistics & numerical data , Population Surveillance/methods , Sentinel Surveillance , Epidemics/statistics & numerical data , Forecasting , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/virology , Public Health , Scotland/epidemiology , Seasons
4.
Euro Surveill ; 22(32)2017 08 03.
Article in English | MEDLINE | ID: mdl-28816651

ABSTRACT

During the summers of 2015 and 2016, the United Kingdom experienced large outbreaks of cyclosporiasis in travellers returning from Mexico. As the source of the outbreaks was not identified, there is the potential for a similar outbreak to occur in 2017; indeed 78 cases had already been reported as at 27 July 2017. Early communication and international collaboration is essential to provide a better understanding of the source and extent of this recurring situation.


Subject(s)
Cyclospora/isolation & purification , Cyclosporiasis/diagnosis , Diarrhea/etiology , Disease Outbreaks , Travel , Adult , Age Distribution , Diarrhea/epidemiology , Disease Notification , Feces , Female , Humans , Male , Mexico , Population Surveillance , Seasons , Sex Distribution , Surveys and Questionnaires , United Kingdom/epidemiology
5.
J Infect Dis ; 222(4): 696-698, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32497172
6.
Vaccine ; 40(9): 1306-1315, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35109968

ABSTRACT

INTRODUCTION: Despite seasonal influenza vaccination programmes in most countries targeting individuals aged ≥ 65 (or ≥ 55) years and high risk-groups, significant disease burden remains. We explored the impact and cost-effectiveness of 27 vaccination programmes targeting the elderly and/or children in eight European settings (n = 205.8 million). METHODS: We used an age-structured dynamic-transmission model to infer age- and (sub-)type-specific seasonal influenza virus infections calibrated to England, France, Ireland, Navarra, The Netherlands, Portugal, Scotland, and Spain between 2010/11 and 2017/18. The base-case vaccination scenario consisted of non-adjuvanted, non-high dose trivalent vaccines (TV) and no universal paediatric vaccination. We explored i) moving the elderly to "improved" (i.e., adjuvanted or high-dose) trivalent vaccines (iTV) or non-adjuvanted non-high-dose quadrivalent vaccines (QV); ii) adopting mass paediatric vaccination with TV or QV; and iii) combining the elderly and paediatric strategies. We estimated setting-specific costs and quality-adjusted life years (QALYs) gained from the healthcare perspective, and discounted QALYs at 3.0%. RESULTS: In the elderly, the estimated numbers of infection per 100,000 population are reduced by a median of 261.5 (range across settings: 154.4, 475.7) when moving the elderly to iTV and by 150.8 (77.6, 262.3) when moving them to QV. Through indirect protection, adopting mass paediatric programmes with 25% uptake achieves similar reductions in the elderly of 233.6 using TV (range: 58.9, 425.6) or 266.5 using QV (65.7, 477.9), with substantial health gains from averted infections across ages. At €35,000/QALY gained, moving the elderly to iTV plus adopting mass paediatric QV programmes provides the highest mean net benefits and probabilities of being cost-effective in all settings and paediatric coverage levels. CONCLUSION: Given the direct and indirect protection, and depending on the vaccine prices, model results support a combination of having moved the elderly to an improved vaccine and adopting universal paediatric vaccination programmes across the European settings.


Subject(s)
Influenza Vaccines , Influenza, Human , Aged , Child , Cost-Benefit Analysis , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Mass Vaccination , Middle Aged , Quality-Adjusted Life Years , Seasons , Vaccination
7.
Influenza Other Respir Viruses ; 15(4): 429-438, 2021 07.
Article in English | MEDLINE | ID: mdl-33481344

ABSTRACT

BACKGROUND: Claims of influenza vaccination increasing COVID-19 risk are circulating. Within the I-MOVE-COVID-19 primary care multicentre study, we measured the association between 2019-20 influenza vaccination and COVID-19. METHODS: We conducted a multicentre test-negative case-control study at primary care level, in study sites in five European countries, from March to August 2020. Patients presenting with acute respiratory infection were swabbed, with demographic, 2019-20 influenza vaccination and clinical information documented. Using logistic regression, we measured the adjusted odds ratio (aOR), adjusting for study site and age, sex, calendar time, presence of chronic conditions. The main analysis included patients swabbed ≤7 days after onset from the three countries with <15% of missing influenza vaccination. In secondary analyses, we included five countries, using multiple imputation with chained equations to account for missing data. RESULTS: We included 257 COVID-19 cases and 1631 controls in the main analysis (three countries). The overall aOR between influenza vaccination and COVID-19 was 0.93 (95% CI: 0.66-1.32). The aOR was 0.92 (95% CI: 0.58-1.46) and 0.92 (95% CI: 0.51-1.67) among those aged 20-59 and ≥60 years, respectively. In secondary analyses, we included 6457 cases and 69 272 controls. The imputed aOR was 0.87 (95% CI: 0.79-0.95) among all ages and any delay between swab and symptom onset. CONCLUSIONS: There was no evidence that COVID-19 cases were more likely to be vaccinated against influenza than controls. Influenza vaccination should be encouraged among target groups for vaccination. I-MOVE-COVID-19 will continue documenting influenza vaccination status in 2020-21, in order to learn about effects of recent influenza vaccination.


Subject(s)
COVID-19/epidemiology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Orthomyxoviridae/immunology , Vaccination/statistics & numerical data , COVID-19/diagnosis , Case-Control Studies , Europe/epidemiology , Female , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Logistic Models , Male , Odds Ratio , Primary Health Care/organization & administration , Primary Health Care/statistics & numerical data , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2
8.
Vaccine ; 38(3): 489-497, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31685296

ABSTRACT

2018/19 was the first season of introduction of a newly licensed adjuvanted influenza vaccine (aTIV) for adults aged 65 years and over and the sixth season in the roll-out of a childhood influenza vaccination programme with a quadrivalent live attenuated influenza vaccine (LAIV). The season saw mainly A(H1N1)pdm09 and latterly A(H3N2) circulation. End-of-season adjusted vaccine effectiveness (aVE) estimates against laboratory confirmed influenza infection in primary care were calculated using the test negative case control method adjusting for key confounders. End-of-season aVE was 44.3% (95% CI: 26.8, 57.7) against all laboratory-confirmed influenza; 45.7% (95% CI: 26.0, 60.1) against influenza A(H1N1)pdm09 and 35.1% (95% CI: -3.7,59.3) against A(H3N2). Overall aVE was 49.9% (95%CI: -13.7, 77.9) for all those ≥ 65 years of age and 62.0% (95% CI: 3.4, 85.0) for those who received aTIV. Overall aVE for 2-17 year olds receiving LAIV was 48.6% (95% CI: -4.4, 74.7). The paper provides evidence of overall significant influenza VE in 2018/19, most notably against influenza A(H1N1)pdm09, however, as seen in 2017/18, there was reduced, non-significant VE against A(H3N2). aTIV provided significant protection for those 65 years of age and over.


Subject(s)
Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Primary Health Care/trends , Seasons , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Male , Middle Aged , Primary Health Care/methods , Treatment Outcome , United Kingdom/epidemiology , Vaccine Potency , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL