Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33915108

ABSTRACT

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Subject(s)
Host-Pathogen Interactions , Immunity, Cellular , Pneumonia, Viral/etiology , Pneumonia, Viral/metabolism , Receptor, Notch4/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Amphiregulin/pharmacology , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Immunohistochemistry , Immunomodulation/drug effects , Inflammation Mediators/metabolism , Influenza A virus/physiology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pneumonia, Viral/pathology , Receptor, Notch4/antagonists & inhibitors , Receptor, Notch4/genetics , Severity of Illness Index
2.
J Clin Immunol ; 44(6): 142, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847943

ABSTRACT

PURPOSE: Common Variable Immunodeficiency (CVID) is characterized by hypogammaglobulinemia and failure of specific antibody production due to B-cell defects. However, studies have documented various T-cell abnormalities, potentially linked to viral complications. The frequency of Cytomegalovirus (CMV) replication in CVID cohorts is poorly studied. To address this gap in knowledge, we set up an observational study with the objectives of identifying CVID patients with active viraemia (CMV, Epstein-Barr virus (EBV)), evaluating potential correlations with immunophenotypic characteristics, clinical outcome, and the dynamic progression of clinical phenotypes over time. METHODS: 31 CVID patients were retrospectively analysed according to viraemia, clinical and immunologic characteristics. 21 patients with non CVID humoral immunodeficiency were also evaluated as control. RESULTS: Active viral replication of CMV and/or EBV was observed in 25% of all patients. CMV replication was detected only in CVID patients (16%). CVID patients with active viral replication showed reduced HLA-DR+ NK counts when compared with CMV-DNA negative CVID patients. Viraemic patients had lower counts of LIN-DNAMbright and LIN-CD16+ inflammatory lymphoid precursors which correlated with NK-cell subsets. Analysis of the dynamic progression of CVID clinical phenotypes over time, showed that the initial infectious phenotype progressed to complicated phenotypes with time. All CMV viraemic patients had complicated disease. CONCLUSION: Taken together, an impaired production of inflammatory precursors and NK activation is present in CVID patients with active viraemia. Since "Complicated" CVID occurs as a function of disease duration, there is need for an accurate evaluation of this aspect to improve classification and clinical management of CVID patients.


Subject(s)
Common Variable Immunodeficiency , Cytomegalovirus Infections , Cytomegalovirus , Herpesvirus 4, Human , Virus Replication , Humans , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/complications , Male , Female , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Cytomegalovirus/physiology , Adult , Middle Aged , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/immunology , Retrospective Studies , Killer Cells, Natural/immunology , Young Adult , Viremia/immunology , Epstein-Barr Virus Infections/immunology , Immunophenotyping , Aged , Adolescent
3.
Thromb J ; 21(1): 113, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37924122

ABSTRACT

Systemic lupus erythematosus (SLE) patients have an increased risk of cardiovascular disease and thrombotic events, and the presence of antiphospholipid antibodies further raises the risk of these complications. Here we report a case of a patient with SLE and triple positivity for antiphospholipid antibodies who developed a popliteal artery thrombosis in the context of a severe hyperhomocysteinemia after the introduction of methotrexate (MTX) treatment. MTX is one of the most prescribed medications for a wide spectrum of autoimmune diseases, including SLE. On the other hand, by interfering with folate metabolism, it may induce hyperhomocysteinemia, which, in turn, may increase the risk of vascular complications. Current recommendations suggest screening and, when possible, treating classical and disease-related cardiovascular risk factors in all lupus patients. Based on what observed in our case, we suggest a follow-up of homocysteine levels after the introduction of drugs capable of inducing hyperhomocysteinemia, such as MTX, in SLE patients at high cardiovascular risk.

SELECTION OF CITATIONS
SEARCH DETAIL