Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 22(14)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34299026

ABSTRACT

Pseudomonas aeruginosa and Sphingobacterium sp. are well known for their ability to decontaminate many environmental pollutants while Geobacillus sp. have been exploited for their thermostable enzymes. This study reports the annotation of genomes of P. aeruginosa S3, Sphingobacterium S2 and Geobacillus EC-3 that were isolated from compost, based on their ability to degrade poly(lactic acid), PLA. Draft genomes of the strains were assembled from Illumina reads, annotated and viewed with the aim of gaining insight into the genetic elements involved in degradation of PLA. The draft genome of Sphinogobacterium strain S2 (435 contigs) was estimated at 5,604,691 bp and the draft genome of P. aeruginosa strain S3 (303 contigs) was estimated at 6,631,638 bp. The draft genome of the thermophile Geobacillus strain EC-3 (111 contigs) was estimated at 3,397,712 bp. A total of 5385 (60% with annotation), 6437 (80% with annotation) and 3790 (74% with annotation) protein-coding genes were predicted for strains S2, S3 and EC-3, respectively. Catabolic genes for the biodegradation of xenobiotics, aromatic compounds and lactic acid as well as the genes attributable to the establishment and regulation of biofilm were identified in all three draft genomes. Our results reveal essential genetic elements that facilitate PLA metabolism at mesophilic and thermophilic temperatures in these three isolates.


Subject(s)
Bacterial Proteins/genetics , Biofilms/growth & development , Genome, Bacterial , Geobacillus/genetics , Polyesters/metabolism , Pseudomonas aeruginosa/genetics , Sphingobacterium/genetics , Biodegradation, Environmental , DNA, Bacterial/analysis , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phylogeny
2.
BMC Microbiol ; 18(1): 35, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29661149

ABSTRACT

BACKGROUND: Porcine tonsils are lympho-epithelial tissues, colonized by numerous bacteria and viruses, that act as a reservoir for both host-specific pathogens and zoonotic pathogens with a high potential of transmission to humans. There are no existing studies describing the development of the tonsillar microbiome. We sequenced 16S rRNA genes from tonsillar samples of pigs to follow the development of the microbial communities from birth through weaning. Samples derived from sows were also analyzed to determine potential sources for the tonsil microbiome in piglets. RESULTS: The composition of the newborn piglet tonsil microbiome could be differentiated by litter and had strong similarity to the sow teat skin as well as sow vaginal microbiome. The tonsil microbiome in these young piglets was mainly dominated by members of the Pasteurellaceae, Moraxellaceae, and Streptococcaceae families, while there were some transient members of the microbiome that were abundant at specific times, such as Staphylococcaceae in newborns and Fusobacteriaceae and Leptotrichiaceae in weeks 2 and 3. The microbiome initially differed between litters but over the following 3 weeks the communities of different litters converged in composition and then diverged in week 4 due to a combination of changes and stresses associated with weaning, including a shift from milk to a solid diet, in-feed Carbadox® and room change. CONCLUSIONS: A significant portion of the tonsil microbiome was acquired either at birth from the sow vaginal tract or within a few hours post-birth from the sow teat skin. Our data demonstrate a temporal succession in the development of the pig tonsillar microbiome through the first weeks of life, with a convergence in the composition of the microbiome in all piglets by 3 weeks of age. The combination of management practices associated with weaning coincided with dramatic shifts in the tonsillar microbiome.


Subject(s)
Bacteria/classification , Microbiota , Palatine Tonsil/microbiology , Phylogeny , Swine/microbiology , Weaning , Animal Feed , Animals , Animals, Newborn , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , DNA, Bacterial/analysis , Diet/veterinary , Female , Host Specificity , Microbiota/genetics , Milk , RNA, Ribosomal, 16S/genetics , Sequence Analysis , Skin/microbiology , Vagina/microbiology
3.
Fish Shellfish Immunol ; 75: 99-108, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29407616

ABSTRACT

This study examined the effect of dietary prebiotics and probiotics after 16 weeks, followed by 8 weeks of post feeding trial with the control unsupplemented diet on haematological and immune response against Aeromonas hydrophila infection in Channa striata fingerlings. Fish were raised on a 40% protein and 12% lipid feed containing three commercial prebiotics (ß-glucan, GOS or galacto-oligosaccharide, MOS or mannan-oligosaccharide); and two probiotics- (Saccharomyces cerevisiae, Lactobacillus acidophilus), respectively and a control. Throughout the study, supplementation with dietary prebiotics and probiotics led to significant (P < 0.05) improvement in the red blood cells, white blood cells, packed cell volume, haemoglobin concentration and serum protein level and lysozyme activities; and these improvements were effective significantly (P < 0.05) when the fish were challenged with Aeromonas hydrophila at the dose of 2 × 106. The disease resistance against A. hydrophila was higher significantly (P < 0.05) in fish fed with probiotic feed supplements (L.acidophilus was highest) compared to prebiotics and control. The study is the first to report the absence of differences in sustaining the efficacies attained after intake of ß-glucan, GOS and MOS upon post-feeding with an unsupplemented feed, over a prolonged period.


Subject(s)
Disease Resistance/drug effects , Fish Diseases/immunology , Perciformes/immunology , Prebiotics , Probiotics/pharmacology , Aeromonas hydrophila/physiology , Animals , Gram-Negative Bacterial Infections/immunology , Hematologic Tests/veterinary , Prebiotics/administration & dosage , Probiotics/administration & dosage
4.
Appl Environ Microbiol ; 81(12): 4164-72, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25862231

ABSTRACT

A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.


Subject(s)
Biodegradation, Environmental , Groundwater/microbiology , Microbial Consortia/genetics , Microbial Consortia/physiology , Uranium/metabolism , Water Pollutants, Radioactive/metabolism , Acetates/metabolism , Emulsions/chemistry , Microarray Analysis , Plant Oils , Sulfates/metabolism , Time Factors
5.
Can J Microbiol ; 61(1): 72-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25494536

ABSTRACT

Bacterial communities play important roles in the biological functioning of crustaceans, yet little is known about their diversity, structure, and dynamics. This study was conducted to investigate the bacterial communities associated with the benthic amphipod Diporeia, an important component in the Great Lakes foodweb that has been declining over the past 3 decades. In this study, the combination of 16S rRNA gene sequencing and terminal restriction fragment length polymorphism revealed a total of 175 and 138 terminal restriction fragments (T-RFs) in Diporeia samples following treatment with the endonucleases HhaI and MspI, respectively. Relatively abundant and prevalent T-RFs were affiliated with the genera Flavobacterium and Pseudomonas and the class Betaproteobacteria. T-RFs affiliated with the order Rickettsiales were also detected. A significant difference in T-RF presence and abundance (P = 0.035) was detected among profiles generated for Diporeia collected from 4 sites in Lake Michigan. Comparison of profiles generated for Diporeia samples collected in 2 years from lakes Superior and Michigan showed a significant change in diversity for Lake Superior Diporeia but not Lake Michigan Diporeia. Profiles from one Lake Michigan site contained multiple unique T-RFs compared with other Lake Michigan Diporeia profiles, most notably one that represents the genus Methylotenera. This study generated the most extensive list of bacteria associated with Diporeia and sheds useful insights on the microbiome of Great Lakes Diporeia that may help to reveal potential causes of the decline of Diporeia populations.


Subject(s)
Amphipoda/microbiology , Bacteria/isolation & purification , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , DNA, Bacterial/genetics , Lakes/microbiology , Molecular Sequence Data , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics
6.
Microb Ecol ; 66(3): 500-11, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23857377

ABSTRACT

We investigated microbial succession on lake sturgeon (Acipenser fulvescens) egg surfaces over the course of their incubation period as a function of simulated stream flow rate. The primary objective was to characterize the microbial community assembly during succession and to examine how simulated stream flow rate affect the successional process. Sturgeon eggs were reared under three flow regimes; high (0.55 m/s), low (0.18 m/s), and variable (0.35 and 0.11 m/s alternating 12 h intervals). Eggs were collected from each flow regime at different egg developmental stages. Microbial community DNA was extracted from egg surface and the communities were examined using 16S rRNA gene-based terminal restriction fragment length polymorphism and 454 pyrosequencing. Analysis of these datasets using principal component analysis revealed that microbial communities were clustered by egg developmental stages (early, middle, and late) regardless of flow regimes. 454 pyrosequencing data suggested that 90-98 % of the microbial communities were composed of the phyla Proteobacteria and Bacteroidetes throughout succession. ß-Protebacteria was more dominant in the early stage, Bacteroidetes became more dominant in the middle stage, and α-Proteobacteria became dominant in the late stage. A total of 360 genera and 5,826 OTUs at 97 % similarity cutoff were associated with the eggs. Midway through egg development, the egg-associated communities of the low flow regime had a higher diversity than those communities developed under high or variable flow regimes. Results show that microbial community turnover occurred during embryogenesis, and stream flow rate influenced the microbial succession processes on the sturgeon egg surfaces.


Subject(s)
Bacteria/isolation & purification , Fishes/microbiology , Ovum/microbiology , Water Movements , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Ecosystem , Fishes/growth & development , Lakes/chemistry , Molecular Sequence Data , Ovum/growth & development , Phylogeny
7.
PLoS One ; 18(11): e0288040, 2023.
Article in English | MEDLINE | ID: mdl-37956125

ABSTRACT

As a strategy for minimizing microbial infections in fish hatcheries, we have investigated how putatively probiotic bacterial populations influence biofilm formation. All surfaces that are exposed to the aquatic milieu develop a microbial community through the selective assembly of microbial populations into a surface-adhering biofilm. In the investigations reported herein, we describe laboratory experiments designed to determine how initial colonization of a surface by nonpathogenic isolates from sturgeon eggs influence the subsequent assembly of populations from a pelagic river community, into the existing biofilm. All eight of the tested strains altered the assembly of river biofilm in a strain-specific manner. Previously formed isolate biofilm was challenged with natural river populations and after 24 hours, two strains and two-isolate combinations proved highly resistant to invasion, comprising at least 80% of the biofilm community, four isolates were intermediate in resistance, accounting for at least 45% of the biofilm community and two isolates were reduced to 4% of the biofilm community. Founding biofilms of Serratia sp, and combinations of Brevundimonas sp.-Hydrogenophaga sp. and Brevundimonas sp.-Acidovorax sp. specifically blocked populations of Aeromonas and Flavobacterium, potential fish pathogens, from colonizing the biofilm. In addition, all isolate biofilms were effective at blocking invading populations of Arcobacter. Several strains, notably Deinococcus sp., recruited specific low-abundance river populations into the top 25 most abundant populations within biofilm. The experiments suggest that relatively simple measures can be used to control the assembly of biofilm on the eggs surface and perhaps offer protection from pathogens. In addition, the methodology provides a relatively rapid way to detect potentially strong ecological interactions between bacterial populations in the formation of biofilms.


Subject(s)
Biofilms , Rivers , Animals , Flavobacterium , Bacteria, Aerobic , Fishes/microbiology
8.
Front Microbiol ; 14: 1267008, 2023.
Article in English | MEDLINE | ID: mdl-38029134

ABSTRACT

The northern root-knot nematode (Meloidogyne hapla) causes extensive damage to agricultural crops globally. In addition, M. hapla populations with no known genetic or morphological differences exhibit parasitic variability (PV) or reproductive potential based on soil type. However, why M. hapla populations from mineral soil with degraded soil health conditions have a higher PV than populations from muck soil is unknown. To improve our understanding of soil bio-physicochemical conditions in the environment where M. hapla populations exhibited PV, this study characterized the soil microbial community and core- and indicator-species structure associated with M. hapla occurrence and soil health conditions in 15 Michigan mineral and muck vegetable production fields. Bacterial and fungal communities in soils from where nematodes were isolated were characterized with high throughput sequencing of 16S and internal transcribed spacer (ITS) rDNA. Our results showed that M. hapla-infested, as well as disturbed and degraded muck fields, had lower bacterial diversity (observed richness and Shannon) compared to corresponding mineral soil fields or non-infested mineral fields. Bacterial and fungal community abundance varied by soil group, soil health conditions, and/or M. hapla occurrence. A core microbial community was found to consist of 39 bacterial and 44 fungal sub-operational taxonomic units (OTUs) across all fields. In addition, 25 bacteria were resolved as indicator OTUs associated with M. hapla presence or absence, and 1,065 bacteria as indicator OTUs associated with soil health conditions. Out of the 1,065 bacterial OTUs, 73.9% indicated stable soil health, 8.4% disturbed, and 0.4% degraded condition; no indicators were common to the three categories. Collectively, these results provide a foundation for an in-depth understanding of the environment where M. hapla exists and conditions associated with parasitic variability.

9.
Front Microbiol ; 14: 1172862, 2023.
Article in English | MEDLINE | ID: mdl-37645221

ABSTRACT

Microbial communities are known as the primary decomposers of all the carbon accumulated in the soil. However, how important soil structure and its conventional or organic management, moisture content, and how different plant species impact this process are less understood. To answer these questions, we generated a soil microcosm with decomposing corn and soy leaves, as well as soil adjacent to the leaves, and compared it to control samples. We then used high-throughput amplicon sequencing of the ITS and 16S rDNA regions to characterize these microbiomes. Leaf microbiomes were the least diverse and the most even in terms of OTU richness and abundance compared to near soil and far soil, especially in their bacterial component. Microbial composition was significantly and primarily affected by niche (leaves vs. soil) but also by soil management type and plant species in the fungal microbiome, while moisture content and pore sizes were more important drivers for the bacterial communities. The pore size effect was significantly dependent on moisture content, but only in the organic management type. Overall, our results refine our understanding of the decomposition of carbon residues in the soil and the factors that influence it, which are key for environmental sustainability and for evaluating changes in ecosystem functions.

10.
BMC Microbiol ; 12: 21, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22316246

ABSTRACT

BACKGROUND: The genome of the Gram-positive, metal-reducing, dehalorespiring Desulfitobacterium hafniense DCB-2 was sequenced in order to gain insights into its metabolic capacities, adaptive physiology, and regulatory machineries, and to compare with that of Desulfitobacterium hafniense Y51, the phylogenetically closest strain among the species with a sequenced genome. RESULTS: The genome of Desulfitobacterium hafniense DCB-2 is composed of a 5,279,134-bp circular chromosome with 5,042 predicted genes. Genome content and parallel physiological studies support the cell's ability to fix N2 and CO2, form spores and biofilms, reduce metals, and use a variety of electron acceptors in respiration, including halogenated organic compounds. The genome contained seven reductive dehalogenase genes and four nitrogenase gene homologs but lacked the Nar respiratory nitrate reductase system. The D. hafniense DCB-2 genome contained genes for 43 RNA polymerase sigma factors including 27 sigma-24 subunits, 59 two-component signal transduction systems, and about 730 transporter proteins. In addition, it contained genes for 53 molybdopterin-binding oxidoreductases, 19 flavoprotein paralogs of the fumarate reductase, and many other FAD/FMN-binding oxidoreductases, proving the cell's versatility in both adaptive and reductive capacities. Together with the ability to form spores, the presence of the CO2-fixing Wood-Ljungdahl pathway and the genes associated with oxygen tolerance add flexibility to the cell's options for survival under stress. CONCLUSIONS: D. hafniense DCB-2's genome contains genes consistent with its abilities for dehalogenation, metal reduction, N2 and CO2 fixation, anaerobic respiration, oxygen tolerance, spore formation, and biofilm formation which make this organism a potential candidate for bioremediation at contaminated sites.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Desulfitobacterium/genetics , Genome, Bacterial , Carbon Dioxide/metabolism , Desulfitobacterium/metabolism , Genes, Bacterial , Halogens/metabolism , Metabolic Networks and Pathways/genetics , Metals/metabolism , Molecular Sequence Data , Nitrogen Fixation , Organic Chemicals/metabolism , Oxidation-Reduction , Sequence Analysis, DNA
11.
BMC Microbiol ; 12: 20, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22313693

ABSTRACT

BACKGROUND: Porcine tonsils are the colonization site for many pathogenic as well as commensal microorganisms and are the primary lymphoid tissue encountered by organisms entering through the mouth or nares. The goal of this study was to provide an in-depth characterization of the composition and structure of the tonsillar microbial communities and to define the core microbiome in the tonsils of healthy pigs, using high throughput bar-coded 454-FLX pyrosequencing. RESULTS: Whole tonsils were collected at necropsy from 12 16-week-old finisher pigs from two healthy herds. Tonsil brushes were also used to collect samples from four of these animals. Bacterial DNA was isolated from each sample, amplified by PCR with universal primers specific for the bacterial 16S rRNA genes, and the PCR products sequenced using pyrosequencing. An average of 13,000 sequences were generated from each sample. Microbial community members were identified by sequence comparison to known bacterial 16S rRNA gene sequences.The microbiomes of these healthy herds showed very strong similarities in the major components as well as distinct differences in minor components. Pasteurellaceae dominated the tonsillar microbiome in all animals, comprising ~60% of the total, although the relative proportions of the genera Actinobacillus, Haemophilus, and Pasteurella varied between the herds. Also found in all animals were the genera Alkanindiges, Peptostreptococcus, Veillonella, Streptococcus and Fusobacterium, as well as Enterobacteriaceae and Neisseriaceae. Treponema and Chlamydia were unique to Herd 1, while Arcanobacterium was unique to Herd 2.Tonsil brushes yielded similar results to tissue specimens, although Enterobacteriaceae and obligate anaerobes were more frequently found in tissue than in brush samples, and Chlamydia, an obligately intracellular organism, was not found in brush specimens. CONCLUSIONS: We have extended and supported our previous studies with 16S clone libraries, using 16S rRNA gene pyrosequencing to describe the microbial communities in tonsils of healthy pigs. We have defined a core microbiome, dominated by Pasteurellaceae, in tonsil specimens, and have also demonstrated the presence of unique minor components of the tonsillar microbiome present in each herd. We have validated the use of non-invasive tonsil brushes, in comparison to tonsil tissue, which will facilitate future studies.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Metagenome , Palatine Tonsil/microbiology , Swine/microbiology , Animals , Bacteria/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Microorganisms ; 10(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630448

ABSTRACT

Antibiotics, drugs, and chemicals (collectively referred to as chemotherapeutants) are widely embraced in fish aquaculture as important tools to control or prevent disease outbreaks. Potential negative effects include changes in microbial community composition and diversity during early life stages, which can reverse the beneficial roles of gut microbiota for the maintenance of host physiological processes and homeostatic regulation. We characterized the gut microbial community composition and diversity of an ecologically and economically important fish species, the lake sturgeon (Acipenser fulvescens), during the early larval period in response to weekly treatments using chemotherapeutants commonly used in aquaculture (chloramine-T, hydrogen peroxide, and NaCl2 followed by hydrogen peroxide) relative to untreated controls. The effects of founding microbial community origin (wild stream vs. hatchery water) were also evaluated. Gut communities were quantified using massively parallel next generation sequencing based on the V4 region of the 16S rRNA gene. Members of the phylum Firmicutes (principally unclassified Clostridiales and Clostridium_sensu_stricto) and Proteobacteria were the dominant taxa in all gut samples regardless of treatment. The egg incubation environment (origin) and its interaction with chemotherapeutant treatment were significantly associated with indices of microbial taxonomic diversity. We observed large variation in the beta diversity of lake sturgeon gut microbiota between larvae from eggs incubated in hatchery and wild (stream) origins based on nonmetric dimensional scaling (NMDS). Permutational ANOVA indicated the effects of chemotherapeutic treatments on gut microbial community composition were dependent on the initial source of the founding microbial community. Influences of microbiota colonization during early ontogenetic stages and the resilience of gut microbiota to topical chemotherapeutic treatments are discussed.

13.
PLoS One ; 17(11): e0277336, 2022.
Article in English | MEDLINE | ID: mdl-36409729

ABSTRACT

Documentation of how interactions among members of different stream communities [e.g., microbial communities and aquatic insect taxa exhibiting different feeding strategies (FS)] collectively influence the growth, survival, and recruitment of stream fishes is limited. Considerable spatial overlap exists between early life stages of stream fishes, including species of conservation concern like lake sturgeon (Acipenser fulvescens), and aquatic insects and microbial taxa that abundantly occupy substrates on which spawning occurs. Habitat overlap suggests that species interactions across trophic levels may be common, but outcomes of these interactions are poorly understood. We conducted an experiment where lake sturgeon eggs were fertilized and incubated in the presence of individuals from one of four aquatic insect FS taxa including predators, facultative and obligate-scrapers, collector-filterers/facultative predators, and a control (no insects). We quantified and compared the effects of different insect taxa on the taxonomic composition and relative abundance of egg surface bacterial and lower eukaryotic communities, egg size, incubation time to hatch, free embryo body size (total length) at hatch, yolk-sac area, (a measure of resource utilization), and percent survival to hatch. Mean egg size varied significantly among insect treatments. Eggs exposed to predators had a lower mean percent survival to hatch. Eggs exposed to predators had significantly shorter incubation periods. At hatch, free embryos exposed to predators had significantly smaller yolk sacs and total length. Multivariate analyses revealed that egg bacterial and lower eukaryotic surface community composition varied significantly among insect treatments and between time periods (1 vs 4 days post-fertilization). Quantitative PCR documented significant differences in bacterial 16S copy number, and thus abundance on egg surfaces varied across insect treatments. Results indicate that lethal and non-lethal effects associated with interactions between lake sturgeon eggs and free embryos and aquatic insects, particularly predators, contributed to lake sturgeon trait variability that may affect population levels of recruitment.


Subject(s)
Insecta , Microbiota , Animals , Larva , Fishes , Phenotype , Eukaryota
14.
Appl Environ Microbiol ; 77(11): 3860-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21498771

ABSTRACT

A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Biodegradation, Environmental , Biodiversity , Soil Microbiology , Soil Pollutants, Radioactive/metabolism , Uranium/metabolism , Bacteria/metabolism , Ethanol/metabolism , Ferric Compounds/metabolism , Microarray Analysis , Nitrates/metabolism , Sulfates/metabolism , United States
15.
Appl Microbiol Biotechnol ; 91(4): 1193-202, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21667276

ABSTRACT

Terminal restriction fragment length polymorphism (T-RFLP) can be used to assess how land use management changes the dominant members of bacterial communities. We compared T-RFLP profiles obtained via amplification with forward primers (27, 63F) each coupled with the fluorescently labeled reverse primer (1392R) and multiple restriction enzymes to determine the best combination for interrogating soil bacterial populations in an agricultural soil used for potato production. Both primer pairs provide nearly universal recognition of a 1,400-bp sequence of the bacterial domain in the V(1)-V(3) region of the 16S ribosomal RNA (rRNA) gene relative to known sequences. Labeling the reverse primer allowed for direct comparison of each forward primer and the terminal restriction fragments' relative migration units obtained with each primer pair and restriction enzyme. Redundancy analysis (RDA) and nested multivariate analysis of variance (MANOVA) were used to assess the effects of primer pair and choice of restriction enzyme on the measured relative migration units. Our research indicates that the 63F-1392R amplimer pair provides a more complete description with respect to the bacterial communities present in this potato (Solanum tuberosum L.)-barley (Hordeum vulgare L.) rotation over seeded to crimson clover (Trifolium praense L.). Domain-specific 16S rRNA gene primers are rigorously tested to determine their ability to amplify across a target region of the gene. Yet, variability within or between T-RFLP profiles can result from factors independent of the primer pair. Therefore, researchers should use RDA and MANOVA analyses to evaluate the effects that additional laboratory and environmental variables have on bacterial diversity.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bacteriological Techniques/methods , Biodiversity , DNA, Bacterial/genetics , Polymorphism, Restriction Fragment Length , Soil Microbiology , DNA Primers/genetics , DNA Restriction Enzymes/metabolism , DNA, Bacterial/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Hordeum/growth & development , RNA, Ribosomal, 16S/genetics , Solanum tuberosum/growth & development , Trifolium/growth & development
16.
Appl Environ Microbiol ; 76(20): 6778-86, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20729318

ABSTRACT

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 µM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , Environmental Microbiology , Metagenome , Sulfates/metabolism , Uranium/metabolism , Bacteria/metabolism , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Pollutants, Radioactive/metabolism , Tennessee
17.
Am J Primatol ; 72(7): 566-74, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20146237

ABSTRACT

Although the intestinal flora of chimpanzees has not been studied, insight into this dynamic environment can be obtained through studies on their feces. We analyzed fecal samples from human-habituated, wild chimpanzees at Mahale Mountains National Park, Tanzania, and compared microbial community profiles to determine if members of the same social group were similar. Between July and December 2007, we collected fresh fecal samples from 12 individuals: four juveniles, four adolescents, and four adults, including three parent-offspring pairs. Each sample was analyzed using Terminal-Restriction Fragment Length Polymorphism of amplified 16S rRNA genes. Twelve different profiles were generated, having between 1 and 15 Terminal-Restriction Fragments (T-RFs). Overall, a total of 23 different T-RFs were produced. Putative assignments of T-RFs corresponded to the phyla Firmicutes (Clostridia, Bacilli, and Lactobacilli), Bacteroidetes, Tenericutes (Mollicutes Class), Actinobacteria, and Proteobacteria, as well as to uncultured or unidentified organisms. Firmicutes and Bacteroidetes phyla and Mollicutes Class were the most commonly assigned in 11, 8, and 8 of the samples, respectively, with this being the first report of Mollicutes in wild chimpanzees. Principal Components Analysis (PCA) revealed clustering of nine samples, and 80.5% of the diversity was accounted for by three samples. Morisita indices of community similarity ranged between 0.00 and 0.89, with dissimiliarity (<0.5) between most samples when compared two at a time. Our findings suggest that, although phylotypes are common among individuals, profiles among members of the same social group are host-specific. We conclude that factors other than social group, such as kinship and age, may influence fecal bacterial profiles of wild chimpanzees, and recommend that additional studies be conducted.


Subject(s)
Feces/microbiology , Gram-Positive Bacteria/genetics , Pan troglodytes/microbiology , Animal Feed , Animals , Deoxyribonucleases, Type II Site-Specific/genetics , Female , Fruit , Gram-Positive Bacteria/isolation & purification , Habituation, Psychophysiologic , Humans , Male , Pan troglodytes/genetics , Pan troglodytes/growth & development , Pan troglodytes/psychology , Plant Leaves , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Social Behavior , Tanzania
18.
Environ Technol ; 31(8-9): 1045-60, 2010.
Article in English | MEDLINE | ID: mdl-20662391

ABSTRACT

Ralstonia pickettii isolated from copper-contaminated lake sediment are adapted to high levels of copper after 100 years of selective pressure. Two R. pickettii strains (12D and 12J) were selected for the studies reported herein due to their distinct differences in genomic structure, different metal resistance patterns and carriage of a filamentous phage. Copper sequestration studies revealed that these strains could bind up to 27.44 (12D) and 38.19 (12J) mg copper per g dry weight of cells and that viable cells sequestered more copper than heat-killed cells. Viable cells and heat-killed cells had significantly different saturation binding curves, indicating that one or more unique copper sequestration mechanism(s) was involved in binding by viable cells. Electron microscopy showed alteration of cell outer envelope after cells were grown in the presence of copper, suggesting that the accumulation of copper was membrane associated. X-ray Absorption Near Edge Structure and Extended X-ray Absorption Fine Structure revealed that the copper sequestered was present as Cu(II) and bound to oxygen and/or nitrogen. Recent completion of the genome sequence revealed that an approximately 220 kb region was enriched with metal resistance and transporter genes found in multiple copies. Comparative sequence analysis revealed that several genes may have been derived from horizontal transfer. Hence, rapid adaptation of R. pickettii to high concentrations of metal appears due to robust gene duplication and importation of several types of resistance determinants.


Subject(s)
Copper/metabolism , Ralstonia pickettii/growth & development , Water Pollutants, Chemical/metabolism , Binding Sites/physiology , Kinetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Ralstonia pickettii/metabolism , Ralstonia pickettii/ultrastructure
19.
Environ Microbiol ; 11(10): 2611-26, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19624708

ABSTRACT

A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbial community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Biodiversity , Uranium/metabolism , Water Microbiology , Bacteria/genetics , Biodegradation, Environmental , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Ethanol/metabolism , Genes, Bacterial , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , Water Pollutants, Radioactive/metabolism
20.
Appl Environ Microbiol ; 75(15): 5025-36, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19542341

ABSTRACT

Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H(2), 5.4 nM; CH(4), 2.70 microM) with concentrations of S(2-) (0.03 mM), SO(4)(2-) (14.8 mM), Ca(2+) (15.7 mM), and HCO(3)(-) (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Fresh Water/microbiology , Archaea/genetics , Bacteria/genetics , Cluster Analysis , Cold Temperature , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Hydrogen-Ion Concentration , Michigan , Molecular Sequence Data , Oxygen/analysis , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Sulfur/analysis , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL