Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nature ; 604(7907): 749-756, 2022 04.
Article in English | MEDLINE | ID: mdl-35444283

ABSTRACT

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Subject(s)
Cyclin E , Membrane Proteins , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , CDC2 Protein Kinase , Cyclin E/genetics , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Neoplasms/genetics , Ovarian Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Synthetic Lethal Mutations
2.
Nature ; 550(7677): 481-486, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045389

ABSTRACT

Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice.


Subject(s)
Piperidines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Animals , Apoenzymes/antagonists & inhibitors , Apoenzymes/chemistry , Apoenzymes/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Female , Humans , Mice , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Piperidines/chemical synthesis , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Substrate Specificity , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
3.
J Pharmacol Exp Ther ; 380(3): 210-219, 2022 03.
Article in English | MEDLINE | ID: mdl-35031585

ABSTRACT

Etavopivat is an investigational, oral, small molecule activator of erythrocyte pyruvate kinase (PKR) in development for the treatment of sickle cell disease (SCD) and other hemoglobinopathies. PKR activation is proposed to ameliorate the sickling of SCD red blood cells (RBCs) through multiple mechanisms, including reduction of 2,3-diphosphoglycerate (2,3-DPG), which consequently increases hemoglobin (Hb)-oxygen affinity; increased binding of oxygen reduces sickle hemoglobin polymerization and sickling. In addition, PKR activation increases adenosine triphosphate (ATP) produced via glycolytic flux, which helps preserve membrane integrity and RBC deformability. We evaluated the pharmacodynamic response to etavopivat in nonhuman primates (NHPs) and in healthy human subjects and evaluated the effects in RBCs from patients with SCD after ex vivo treatment with etavopivat. A single dose of etavopivat decreased 2,3-DPG in NHPs and healthy subjects. Hb-oxygen affinity was significantly increased in healthy subjects after 24 hours. After daily dosing of etavopivat over 5 consecutive days in NHPs, ATP was increased by 38% from baseline. Etavopivat increased Hb-oxygen affinity and reduced sickling in RBCs collected from patients with SCD with either homozygous hemoglobin S or hemoglobin S and C disease. Collectively, these results demonstrate the ability of etavopivat to decrease 2,3-DPG and increase ATP, resulting in increased Hb-oxygen affinity and improved sickle RBC function. Etavopivat is currently being evaluated in clinical trials for the treatment of SCD. SIGNIFICANCE STATEMENT: Etavopivat, a small molecule activator of the glycolytic enzyme erythrocyte pyruvate kinase, decreased 2,3-diphosphoglycerate in red blood cells (RBCs) from nonhuman primates and healthy subjects and significantly increased hemoglobin (Hb)-oxygen affinity in healthy subjects. Using ex vivo RBCs from donors with sickle cell disease (SCD) (homozygous hemoglobin S or hemoglobin S and C genotype), etavopivat increased Hb-oxygen affinity and reduced sickling under deoxygenation. Etavopivat shows promise as a treatment for SCD that could potentially reduce vaso-occlusion and improve anemia.


Subject(s)
Anemia, Sickle Cell , Hemoglobin, Sickle , 2,3-Diphosphoglycerate/metabolism , 2,3-Diphosphoglycerate/pharmacology , Adenosine Triphosphate/metabolism , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Animals , Erythrocytes/metabolism , Hemoglobin, Sickle/metabolism , Hemoglobin, Sickle/pharmacology , Hemoglobin, Sickle/therapeutic use , Hemoglobins/metabolism , Humans , Oxygen/metabolism , Pyruvate Kinase/metabolism , Pyruvate Kinase/pharmacology , Pyruvate Kinase/therapeutic use , Pyruvic Acid/pharmacology
4.
Blood ; 135(3): 191-207, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31750881

ABSTRACT

Protein acetylation is an important contributor to cancer initiation. Histone deacetylase 6 (HDAC6) controls JAK2 translation and protein stability and has been implicated in JAK2-driven diseases best exemplified by myeloproliferative neoplasms (MPNs). By using novel classes of highly selective HDAC inhibitors and genetically deficient mouse models, we discovered that HDAC11 rather than HDAC6 is necessary for the proliferation and survival of oncogenic JAK2-driven MPN cells and patient samples. Notably, HDAC11 is variably expressed in primitive stem cells and is expressed largely upon lineage commitment. Although Hdac11is dispensable for normal homeostatic hematopoietic stem and progenitor cell differentiation based on chimeric bone marrow reconstitution, Hdac11 deficiency significantly reduced the abnormal megakaryocyte population, improved splenic architecture, reduced fibrosis, and increased survival in the MPLW515L-MPN mouse model during primary and secondary transplantation. Therefore, inhibitors of HDAC11 are an attractive therapy for treating patients with MPN. Although JAK2 inhibitor therapy provides substantial clinical benefit in MPN patients, the identification of alternative therapeutic targets is needed to reverse MPN pathogenesis and control malignant hematopoiesis. This study establishes HDAC11 as a unique type of target molecule that has therapeutic potential in MPN.


Subject(s)
Hematopoiesis , Histone Deacetylases/physiology , Mutation , Myeloproliferative Disorders/pathology , Oncogenes , Animals , Apoptosis , Cell Cycle , Cell Proliferation , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Humans , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Tumor Cells, Cultured
5.
Bioorg Med Chem Lett ; 28(12): 2143-2147, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29776742

ABSTRACT

N-Hydroxy-2-arylisoindoline-4-carboxamides are potent and selective inhibitors of HDAC11. The discovery, synthesis, and structure activity relationships of this novel series of inhibitors are reported. An advanced analog (FT895) displays promising cellular activity and pharmacokinetic properties that make it a useful tool to study the biology of HDAC11 and its potential use as a therapeutic target for oncology and inflammation indications.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Histone Deacetylases/metabolism , Isoindoles/pharmacology , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Isoindoles/chemical synthesis , Isoindoles/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Recombinant Proteins/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 24(6): 1466-71, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24582987

ABSTRACT

This communication discusses the discovery of novel reverse tricyclic pyridones as inhibitors of Janus kinase 2 (JAK2). By using a kinase cross screening approach coupled with molecular modeling, a unique inhibitor-water interaction was discovered to impart excellent broad kinase selectivity. Improvements in intrinsic potency were achieved by utilizing a rapid library approach, while targeted structural changes to lower lipophilicity led to improved rat pharmacokinetics. This multi-pronged approach led to the identification of 31, which demonstrated encouraging rat pharmacokinetics, in vivo potency, and excellent off-target kinase selectivity.


Subject(s)
Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyridones/chemistry , Sulfonamides/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Drug Evaluation, Preclinical , Half-Life , Janus Kinase 2/metabolism , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
7.
Bioorg Med Chem Lett ; 24(8): 1968-73, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24666646

ABSTRACT

A series of carboxamide-substituted thiophenes demonstrating inhibition of JAK2 is described. Development of this chemical series began with the bioisosteric replacement of a urea substituent by a pyridyl ring. Issues of chemical and metabolic stability were solved using the results of both in vitro and in vivo studies, ultimately delivering compounds such as 24 and 25 that performed well in an acute PK/PD model measuring p-STAT5 inhibition.


Subject(s)
Aminoimidazole Carboxamide/chemical synthesis , Aminoimidazole Carboxamide/pharmacology , Janus Kinase 2/antagonists & inhibitors , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Aminoimidazole Carboxamide/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Disease Models, Animal , Enzyme Activation/drug effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Microsomes/drug effects , Microsomes/enzymology , Models, Biological , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Rats , Thiophenes/chemistry
8.
Res Sq ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38410486

ABSTRACT

Ovarian cancers (OVCAs) and endometrial cancers (EMCAs) with CCNE1-amplification are often resistant to standard of care treatment and represent an unmet clinical need. Previously, synthetic-lethal screening identified loss of the CDK1 regulator, PKMYT1, as synthetically lethal with CCNE1-amplification. We hypothesized that CCNE1-amplification associated replication stress will be more effectively targeted by combining the PKMYT1 inhibitor, lunresertib (RP-6306), with the ATR inhibitor, camonsertib (RP-3500/RG6526). Low dose combination RP-6306 with RP-3500 synergistically increased cytotoxicity more in CCNE1 amplified compared to non-amplified cells. Combination treatment produced durable antitumor activity and increased survival in CCNE1 amplified patient-derived and cell line-derived xenografts. Mechanistically, low doses of RP-6306 with RP-3500 increase CDK1 activation more so than monotherapy, triggering rapid and robust induction of premature mitosis, DNA damage and apoptosis in a CCNE1-dependent manner. These findings suggest that targeting CDK1 activity by combining RP-6306 with RP-3500 is a novel therapeutic approach to treat CCNE1-amplifed OVCAs and EMCAs.

9.
Mol Cancer Ther ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781103

ABSTRACT

Endocrine therapies (ET) with CDK4/6 inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of 22 ER+ breast cancer patient-derived xenografts (PDXs) demonstrated that PKMYT1, a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX organoids and xenografts, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.

10.
J Med Chem ; 65(15): 10251-10284, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35880755

ABSTRACT

PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound 1 was identified as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol increased potency on PKMYT1. These dimethylphenol analogs were found to exist as atropisomers that could be separated and profiled as single enantiomers. Structure-based drug design enabled optimization of cell-based potency. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1. RP-6306 inhibits CCNE1-amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials for treatment of various solid tumors.


Subject(s)
Neoplasms , Protein-Tyrosine Kinases , Cell Line, Tumor , Cell Proliferation , Humans , Membrane Proteins , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases
11.
J Med Chem ; 64(21): 16213-16241, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34714078

ABSTRACT

Identification of low-dose, low-molecular-weight, drug-like inhibitors of protein-protein interactions (PPIs) is a challenging area of research. Despite the challenges, the therapeutic potential of PPI inhibition has driven significant efforts toward this goal. Adding to recent success in this area, we describe herein our efforts to optimize a novel purine carboxylic acid-derived inhibitor of the HDM2-p53 PPI into a series of low-projected dose inhibitors with overall favorable pharmacokinetic and physical properties. Ultimately, a strategy focused on leveraging known binding hot spots coupled with biostructural information to guide the design of conformationally constrained analogs and a focus on efficiency metrics led to the discovery of MK-4688 (compound 56), a highly potent, selective, and low-molecular-weight inhibitor suitable for clinical investigation.


Subject(s)
Imidazoles/chemistry , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyridines/chemistry , Tumor Suppressor Protein p53/antagonists & inhibitors , Humans , Protein Binding , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
12.
Biochim Biophys Acta ; 1792(11): 1073-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19715759

ABSTRACT

Polycythemia vera (PV) is a myeloproliferative disorder involving hematopoietic stem cells. A recurrent somatic missense mutation in JAK2 (JAK2V617F) is thought to play a causal role in PV. Therefore, targeting Jak2 will likely provide a molecular mechanism-based therapy for PV. To facilitate the development of such new and specific therapeutics, a suitable and well-characterized preclinical animal model is essential. Although several mouse models of PV have been reported, the spatiotemporal kinetics of PV formation and progression has not been studied. To address this, we created a bone marrow transplant mouse model that co-expresses mutant Jak2 and luciferase 2 (Luc2) genes. Bioluminescent imaging (BLI) was used to visualize disease cells and analyze the kinetics of PV development in vivo. To better understand the molecular mechanism of PV, we generated mice carrying a kinase inactive mutant Jak2 (Jak2K882E), demonstrating that the PV disease was dependent on constitutive activation of the Jak2 kinase activity. We further showed that the Jak2V617F mutation caused increased stem cell renewal activity and impaired cell differentiation, which was at least in part due to deregulated transcriptional programming. The Jak2V617F-Luc2 PV mice will be a useful preclinical model to characterize novel JAK2 inhibitors for the treatment of PV.


Subject(s)
Janus Kinase 2/metabolism , Luciferases/biosynthesis , Luminescent Measurements , Polycythemia Vera/enzymology , Polycythemia Vera/pathology , Animals , Cell Differentiation/genetics , Disease Models, Animal , Drug Evaluation, Preclinical , Enzyme Inhibitors/therapeutic use , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Luciferases/genetics , Mice , Mice, Mutant Strains , Mutation, Missense , NIH 3T3 Cells , Polycythemia Vera/drug therapy , Polycythemia Vera/genetics , Stem Cells/enzymology , Stem Cells/pathology
14.
Arch Biochem Biophys ; 484(1): 1-7, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19467625

ABSTRACT

A number of inhibitors of kinesin spindle protein (KSP) have been described, which are known from X-ray crystallography studies to bind to an induced fit pocket defined by the L5 loop. We describe the characterization of eight mutant forms of KSP in which six residues that line this pocket have been altered. Mutants were analyzed by measuring rates of enzyme catalysis, in the presence and absence of six KSP inhibitors of four diverse structural classes and of varied ATP-competition status. Our analysis was in agreement with the model of binding established by the structural studies and suggests that binding energy is well distributed across functional groups in these molecules. The majority of the mutants retained significant enzymatic activity while diminishing inhibitor binding, indicating potential for the development of drug resistance. These data provide detailed information on interactions between inhibitor and binding pocket at the functional group level and enable the development of novel KSP inhibitors.


Subject(s)
Kinesins/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding, Competitive , Biocatalysis , Crystallography, X-Ray , Humans , Kinesins/chemistry , Kinesins/genetics , Kinesins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Sequence Homology, Amino Acid
15.
Mol Cell Biol ; 26(10): 3853-63, 2006 May.
Article in English | MEDLINE | ID: mdl-16648480

ABSTRACT

KIF14 is a microtubule motor protein whose elevated expression is associated with poor-prognosis breast cancer. Here we demonstrate KIF14 accumulation in mitotic cells, where it associated with developing spindle poles and spindle microtubules. Cells at later stages of mitosis were characterized by the concentration of KIF14 at the midbody. Time-lapse microscopy revealed that strong RNA interference (RNAi)-mediated silencing of KIF14 induced cytokinesis failure, causing several rounds of endoreduplication and resulting in multinucleated cells. Additionally, less efficacious KIF14-specific short interfering RNAs (siRNAs) induced multiple phenotypes, all of which resulted in acute apoptosis. Our data demonstrate the ability of siRNA-mediated silencing to generate epiallelic hypomorphs associated with KIF14 depletion. Furthermore, the link we observed between siRNA efficacy and phenotypic outcome indicates that distinct stages during cell cycle progression are disrupted by the differential modulation of KIF14 expression.


Subject(s)
Cell Cycle/physiology , Cytokinesis/physiology , Gene Silencing , Kinesins/metabolism , Oncogene Proteins/metabolism , RNA Interference , Adenosine Triphosphatases/analysis , Amino Acid Sequence , Apoptosis , Cell Line , Cloning, Molecular , Consensus Sequence , Epidermal Growth Factor/metabolism , Fluorescent Dyes , Gene Expression Regulation, Neoplastic , HCT116 Cells , HeLa Cells , Humans , Immunoblotting , Indoles , Kinesins/chemistry , Kinesins/genetics , Microscopy, Fluorescence , Microscopy, Video , Molecular Sequence Data , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Penetrance , Protein Structure, Tertiary , RNA, Small Interfering/genetics
16.
PLoS One ; 7(5): e37207, 2012.
Article in English | MEDLINE | ID: mdl-22623993

ABSTRACT

A high percentage of patients with the myeloproliferative disorder polycythemia vera (PV) harbor a Val617→Phe activating mutation in the Janus kinase 2 (JAK2) gene, and both cell culture and mouse models have established a functional role for this mutation in the development of this disease. We describe the properties of MRLB-11055, a highly potent inhibitor of both the WT and V617F forms of JAK2, that has therapeutic efficacy in erythropoietin (EPO)-driven and JAK2V617F-driven mouse models of PV. In cultured cells, MRLB-11055 blocked proliferation and induced apoptosis in a manner consistent with JAK2 pathway inhibition. MRLB-11055 effectively prevented EPO-induced STAT5 activation in the peripheral blood of acutely dosed mice, and could prevent EPO-induced splenomegaly and erythrocytosis in chronically dosed mice. In a bone marrow reconstituted JAK2V617F-luciferase murine PV model, MRLB-11055 rapidly reduced the burden of JAK2V617F-expressing cells from both the spleen and the bone marrow. Using real-time in vivo imaging, we examined the kinetics of disease regression and resurgence, enabling the development of an intermittent dosing schedule that achieved significant reductions in both erythroid and myeloid populations with minimal impact on lymphoid cells. Our studies provide a rationale for the use of non-continuous treatment to provide optimal therapy for PV patients.


Subject(s)
Enzyme Inhibitors/pharmacology , Janus Kinase 2/antagonists & inhibitors , Polycythemia Vera/drug therapy , Animals , Blotting, Western , Cell Proliferation/drug effects , Colony-Forming Units Assay , Dose-Response Relationship, Drug , Enzyme Inhibitors/therapeutic use , Erythropoietin/metabolism , Flow Cytometry , Humans , Mice , Mice, Inbred C57BL , STAT5 Transcription Factor/metabolism
17.
J Med Chem ; 54(20): 7334-49, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21942426

ABSTRACT

The JAK-STAT pathway mediates signaling by cytokines, which control survival, proliferation, and differentiation of a variety of cells. In recent years, a single point mutation (V617F) in the tyrosine kinase JAK2 was found to be present with a high incidence in myeloproliferative disorders (MPDs). This mutation led to hyperactivation of JAK2, cytokine-independent signaling, and subsequent activation of downstream signaling networks. The genetic, biological, and physiological evidence suggests that JAK2 inhibitors could be effective in treating MPDs. De novo design efforts of new scaffolds identified 1-amino-5H-pyrido[4,3-b]indol-4-carboxamides as a new viable lead series. Subsequent optimization of cell potency, metabolic stability, and off-target activities of the leads led to the discovery of 7-(2-aminopyrimidin-5-yl)-1-{[(1R)-1-cyclopropyl-2,2,2-trifluoroethyl]amino}-5H-pyrido[4,3-b]indole-4-carboxamide (65). Compound 65 is a potent, orally active inhibitor of JAK2 with excellent selectivity, PK profile, and in vivo efficacy in animal models.


Subject(s)
Carbolines/chemical synthesis , Indoles/chemical synthesis , Janus Kinase 2/antagonists & inhibitors , Myeloproliferative Disorders/drug therapy , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Administration, Oral , Animals , Carbolines/pharmacokinetics , Carbolines/pharmacology , Crystallography, X-Ray , Dogs , Haplorhini , Hepatocytes/metabolism , Indoles/pharmacokinetics , Indoles/pharmacology , Janus Kinase 2/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Phosphorylation , Polycythemia Vera/drug therapy , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
18.
J Med Chem ; 54(12): 4092-108, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21608528

ABSTRACT

c-Met is a transmembrane tyrosine kinase that mediates activation of several signaling pathways implicated in aggressive cancer phenotypes. In recent years, research into this area has highlighted c-Met as an attractive cancer drug target, triggering a number of approaches to disrupt aberrant c-Met signaling. Screening efforts identified a unique class of 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one kinase inhibitors, exemplified by 1. Subsequent SAR studies led to the development of 81 (MK-2461), a potent inhibitor of c-Met that was efficacious in preclinical animal models of tumor suppression. In addition, biochemical studies and X-ray analysis have revealed that this unique class of kinase inhibitors binds preferentially to the activated (phosphorylated) form of the kinase. This report details the development of 81 and provides a description of its unique biochemical properties.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzocycloheptenes/chemical synthesis , Pyridines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzocycloheptenes/pharmacokinetics , Benzocycloheptenes/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Drug Screening Assays, Antitumor , Female , Haplorhini , Humans , Mice , Mice, Nude , Models, Molecular , Mutation , Neoplasm Transplantation , Phosphorylation , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Receptor Protein-Tyrosine Kinases/genetics , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Transplantation, Heterologous
19.
Biochemistry ; 41(1): 244-50, 2002 Jan 08.
Article in English | MEDLINE | ID: mdl-11772022

ABSTRACT

The iron-chelating catechol siderophore vibriobactin of the pathogenic Vibrio cholerae is assembled by a four-subunit, ten-domain nonribosomal peptide synthetase system, VibE, VibB, VibH, and VibF, using 2,3-dihydroxybenzoate and L-threonine as precursors to two (dihydroxyphenyl)methyloxazolinyl groups in amide linkage on a norspermidine scaffold. We have utilized site-specific and domain-deletion mutagenesis to map the heterocyclization and primary and secondary amine acylation activities of the six-domain (Cy1-Cy2-A-C1-PCP-C2) VibF subunit. We have found that Cy2 is capable of and limited to the condensation (amide bond formation) step of the three-step heterocyclization process, while Cy1 is capable of and limited to the final processing (cyclization/dehydration) steps to the completed heterocycle. Additionally, we have observed that the C2 domain functions in both N(9) (primary amine) acylation and N(5) (secondary amine) acylation of the (dihydroxybenzoyl)norspermidine substrate, leaving no catalytic role for the C1 domain, a conclusion confirmed with the formation of vibriobactin in a C1-deficient system. Thus VibF is an NRPS with two domains, Cy1 and Cy2, that perform a function otherwise performed by one and with one domain, C2, that performs a function otherwise performed by two. While C2 appeared to tolerate uncyclized threonine in place of the usual heterocycle in primary amine acylation, it refused this replacement in the corresponding donor substrate in secondary amine acylation.


Subject(s)
Bacterial Proteins , Oxazoles , Peptide Synthases/metabolism , Vibrio cholerae/enzymology , Amines/metabolism , Base Sequence , Carrier Proteins/metabolism , Catalysis , Catechols/chemistry , Catechols/metabolism , Chromatography, High Pressure Liquid , Cloning, Molecular , Consensus Sequence , Escherichia coli/enzymology , Gene Deletion , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Fragments , Peptide Synthases/chemistry , Peptide Synthases/isolation & purification , Plasmids , Substrate Specificity
20.
Biochemistry ; 41(26): 8429-37, 2002 Jul 02.
Article in English | MEDLINE | ID: mdl-12081492

ABSTRACT

Nonribosomal peptide synthetases (NRPSs) use phosphopantetheine (pPant) bearing carrier proteins to chaperone activated aminoacyl and peptidyl intermediates to the various enzymes that effect peptide synthesis. Using components from siderophore NRPSs that synthesize vibriobactin, enterobactin, yersiniabactin, pyochelin, and anguibactin, we examined the nature of the interaction of such cofactor-carrier proteins with acyl-activating adenylation (A) domains. While VibE, EntE, and PchD were all able to utilize "carrier protein-free" pPant derivatives, the pattern of usage indicated diversity in the binding mechanism, and even the best substrates were down at least 3 log units relative to the native cofactor-carrier protein. When tested with four noncognate carrier proteins, EntE and VibE differed both in the range of substrate utilization efficiency and in the distribution of the efficiencies across this range. Correlating sequence alignments to kinetic efficiency allowed for the construction of eight point mutants of VibE's worst substrate, HMWP2 ArCP, to the corresponding residue in its native VibB. Mutants S49D and H66E combined to increase activity 6.2-fold and had similar enhancing effects on the downstream condensation domain VibH, indicating that the two NRPS enzymes share carrier protein recognition determinants. Similar mutations of HMWP2 ArCP toward EntB had little effect on EntE, suggesting that the position of recognition determinants varies across NRPS systems.


Subject(s)
Bacterial Proteins , Carrier Proteins/metabolism , Pantetheine/analogs & derivatives , Peptide Synthases/metabolism , Siderophores/metabolism , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Binding Sites , DNA Primers , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Pantetheine/metabolism , Peptide Synthases/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL