Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Chemistry ; 27(60): 14871-14875, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34468054

ABSTRACT

Photophysical studies of chromophoric linkers in metal-organic frameworks (MOFs) are undertaken commonly in the context of sensing applications, in search of readily observable changes of optical properties in response to external stimuli. The advantages of the MOF construct as a platform for investigating fundamental photophysical behaviour have been somewhat overlooked. The linker framework offers a unique environment in which the chromophore is geometrically constrained and its structure can be determined crystallographically, but it exists in spatial isolation, unperturbed by inter-chromophore interactions. Furthermore, high-pressure studies enable the photophysical consequences of controlled, incremental changes in local environment or conformation to be observed and correlated with structural data. This approach is demonstrated in the present study of the trans-azobenzene chromophore, constrained in the form of the 4,4'-azobenzenedicarboxylate (abdc) linker, in a UiO topology framework. Previously unobserved effects of pressure-induced solvation and conformational distortion on the lowest energy, nπ* transition are reported, and interpreted the light of crystallographic data. It was found that trans-azobenzene remains non-fluorescent (with a quantum yield less than 10-4 ) despite the prevention of trans-cis isomerization by the constraining MOF structure. We propose that efficient non-radiative decay is mediated by the local, pedal-like twisting of the azo group that is evident as dynamic disorder in the crystal structure.


Subject(s)
Azo Compounds , Metal-Organic Frameworks , Metals , Molecular Conformation
2.
Soft Matter ; 17(8): 2024-2027, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33599656

ABSTRACT

Lipid bilayer vesicles have provided a window into the function and fundamental properties of cells. However, as is the case for most living and soft matter, vesicles do not remain still. This necessitates some microscopy experiments to include a preparatory immobilisation step. Here, we describe a straightforward method to immobilise giant unilamellar vesicles (GUVs) using zirconium-based metal-organic frameworks (MOFs) and demonstrate that GUVs bound in this way will stay in position on a timescale of minutes to hours.


Subject(s)
Metal-Organic Frameworks , Unilamellar Liposomes , Lipid Bilayers , Microscopy , Zirconium
3.
Angew Chem Int Ed Engl ; 59(21): 8118-8122, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32133755

ABSTRACT

Conformational changes of linker units in metal-organic frameworks (MOFs) are often responsible for gate-opening phenomena in selective gas adsorption and stimuli-responsive optical and electrical sensing behaviour. Herein, we show that pressure-induced bathochromic shifts in both fluorescence emission and UV/Vis absorption spectra of a two-fold interpenetrated Hf MOF, linked by 1,4-phenylene-bis(4-ethynylbenzoate) ligands (Hf-peb), are induced by rotation of the central phenyl ring of the linker, from a coplanar arrangement to a twisted, previously unseen conformer. Single-crystal X-ray diffraction, alongside in situ fluorescence and UV/Vis absorption spectroscopies, measured up to 2.1 GPa in a diamond anvil cell on single crystals, are in excellent agreement, correlating linker rotation with modulation of emission. Topologically isolating the 1,4-phenylene-bis(4-ethynylbenzoate) units within a MOF facilitates concurrent structural and spectroscopic studies in the absence of intermolecular perturbation, allowing characterisation of the luminescence properties of a high-energy, twisted conformation of the previously well-studied chromophore. We expect the unique environment provided by network solids, and the capability of combining crystallographic and spectroscopic analysis, will greatly enhance understanding of luminescent molecules and lead to the development of novel sensors and adsorbents.

4.
Phys Chem Chem Phys ; 20(15): 10460-10469, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29617020

ABSTRACT

Ammonia absorption has been investigated in metal-organic frameworks (UiO-67, HKUST-1 and CPO-27-Co) using custom-built apparatus that allows simultaneous neutron powder diffraction (NPD), microwave dielectric characterisation and out-gas mass spectroscopy of solid-state materials during ammonia adsorption. Deuterated ammonia was flowed through the sample and absorption monitored using mass flow meters and mass spectroscopy. Argon gas was then flowed through the ammoniated sample to cause ammonia desorption. Changes in structure found from NPD measurements were compared to changes in dielectric characteristics to differentiate physisorbed and metal-coordinated ammonia, as well as determine decomposition of sample materials. The results of these studies allow the identification of materials with useful ammonia storage properties and provides a new metric for the measurement of gas absorption within mesoporous solids.

5.
J Am Chem Soc ; 139(17): 6253-6260, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28385019

ABSTRACT

Many of the desirable properties of metal-organic frameworks (MOFs) can be tuned by chemical functionalization of the organic ligands that connect their metal clusters into multidimensional network solids. When these linker molecules are intrinsically fluorescent, they can pass on this property to the resultant MOF, potentially generating solid-state sensors, as analytes can be bound within their porous interiors. Herein, we report the synthesis of a series of 14 interpenetrated Zr and Hf MOFs linked by functionalized 4,4'-[1,4-phenylene-bis(ethyne-2,1-diyl)]-dibenzoate (peb2-) ligands, and we analyze the effect of functional group incorporation on their structures and properties. Addition of methyl, fluoro, naphthyl, and benzothiadiazolyl units does not affect the underlying topology, but induces subtle structural changes, such as ligand rotation, and mediates host-guest interactions. Further, we demonstrate that solid-state photoluminescence spectroscopy can be used to probe these effects. For instance, introduction of naphthyl and benzothiadiazolyl units yields MOFs that can act as stable fluorescent water sensors, a dimethyl modified MOF exhibits a temperature dependent phase change controlled by steric clashes between interpenetrated nets, and a tetrafluorinated analogue is found to be superhydrophobic despite only partial fluorination of its organic backbone. These subtle changes in ligand structure coupled with the consistent framework topology give rise to a series of MOFs with a remarkable range of physical properties that are not observed with the ligands alone.

6.
Chemistry ; 22(14): 4870-7, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26916707

ABSTRACT

Metal-organic frameworks (MOFs) containing Zr(IV) -based secondary building units (SBUs), as in the UiO-66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO-66 (Zr and Hf) series MOFs containing integral unsaturated alkene, alkyne and butadiyne units, which serve as reactive sites for postsynthetic modification (PSM) by halogenation. The water stability of a Zr-stilbene MOF allows the dual insertion of both -OH and -Br groups in a single, aqueous bromohydrination step. Quantitative bromination of alkyne- and butadiyne-containing MOFs is demonstrated to be stereoselective, as a consequence of the linker geometry when bound in the MOFs, while the inherent change in hybridisation and geometry of integral linker atoms is facilitated by the high mechanical stabilities of the MOFs, allowing bromination to be characterised in a single-crystal to single-crystal (SCSC) manner. The facile addition of bromine across the unsaturated C-C bonds in the MOFs in solution is extended to irreversible iodine sequestration in the vapour phase. A large-pore interpenetrated Zr MOF demonstrates an I2 storage capacity of 279 % w/w, through a combination of chemisorption and physisorption, which is comparable to the highest reported capacities of benchmark iodine storage materials for radioactive I2 sequestration. We expect this facile PSM process to not only allow trapping of toxic vapours, but also modulate the mechanical properties of the MOFs.

7.
Angew Chem Int Ed Engl ; 55(7): 2401-5, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26797762

ABSTRACT

Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range.

8.
J Am Chem Soc ; 137(30): 9527-30, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26175317

ABSTRACT

The properties of metal-organic frameworks (MOFs) can be tuned by postsynthetic modification (PSM) to introduce specific functionalities after their synthesis. Typically, PSM is carried out on pendant functional groups or through metal/ligand exchange, preserving the structure of the MOF. We report herein the bromination of integral alkyne units in a pair of Zr(4+) and Hf(4+) MOFs, which proceeds stereoselectively in a single-crystal to single-crystal manner. The chemical and mechanical changes in the MOFs are extensively characterized, including the crystal structures of the postsynthetically brominated materials, which show a mechanical contraction of up to 3.7% in volume. The combination of stability and chemical reactivity in these MOFs leads to the possibility of tuning mechanical properties by chemical transformation while also opening up new routes to internal pore functionalization.


Subject(s)
Hafnium/chemistry , Hydrocarbons, Brominated/chemical synthesis , Organometallic Compounds/chemistry , Crystallization , Halogenation , Hydrocarbons, Brominated/chemistry , Molecular Structure , Stereoisomerism
9.
Angew Chem Int Ed Engl ; 53(47): 12723-8, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25079230

ABSTRACT

3D printing techniques allow the laboratory-scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high-throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale-up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase-pure samples of coordination polymers MIL-96 and HKUST-1, in yields comparable to synthesis in traditional apparatus.

10.
ACS Appl Mater Interfaces ; 10(37): 31146-31157, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30136840

ABSTRACT

Metal-organic frameworks (MOFs), network structures wherein metal ions or clusters link organic ligands into porous materials, are being actively researched as nanoscale drug delivery devices as they offer tunable structures with high cargo loading that can easily be further functionalized for targeting and enhanced physiological stability. The excellent biocompatibility of Zr has meant that its MOFs are among the most studied to date, in particular the archetypal Zr terephthalate UiO-66. In contrast, the isoreticular analog linked by fumarate (Zr-fum) has received little attention, despite the endogenous linker being part of the Krebs cycle. Herein, we report a comprehensive study of Zr-fum in the context of drug delivery. Reducing particle size is shown to increase uptake by cancer cells while reducing internalization by macrophages, immune system cells that remove foreign objects from the bloodstream. Zr-fum is compatible with defect loading of the drug dichloroacetate (DCA) as well as surface modification during synthesis, through coordination modulation and postsynthetically. DCA-loaded, PEGylated Zr-fum shows selective in vitro cytotoxicity toward HeLa and MCF-7 cancer cells, likely as a consequence of its enhanced caveolae-mediated endocytosis compared to uncoated precursors, and it is well tolerated by HEK293 kidney cells, J774 macrophages, and human peripheral blood lymphocytes. Compared to UiO-66, Zr-fum is more efficient at transporting the drug mimic calcein into HeLa cells, and DCA-loaded, PEGylated Zr-fum is more effective at reducing HeLa and MCF-7 cell proliferation than the analogous UiO-66 sample. In vitro examination of immune system response shows that Zr-fum samples induce less reactive oxygen species than UiO-66 analogs, possibly as a consequence of the linker being endogenous, and do not activate the C3 and C4 complement cascade pathways, suggesting that Zr-fum can avoid phagocytic activation. The results show that Zr-fum is an attractive alternative to UiO-66 for nanoscale drug delivery, and that a wide range of in vitro experiments is available to greatly inform the design of drug delivery systems prior to early stage animal studies.


Subject(s)
Drug Delivery Systems , Fumarates , Immune System/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Zirconium , Animals , Cell Survival/drug effects , Fumarates/chemistry , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Metal-Organic Frameworks/toxicity , Zirconium/chemistry
11.
ACS Appl Mater Interfaces ; 9(41): 35516-35525, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28925254

ABSTRACT

A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4'-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs.

12.
Dalton Trans ; 45(10): 4132-5, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26583777

ABSTRACT

A new member of the UiO-66 series of zirconium metal-organic frameworks (MOFs) is reported, and the postsynthetic bromination of its integral alkene moeities in a single-crystal to single-crystal manner is fully characterised. Nanoindentation is used to probe the bromination of unsaturated carbon-carbon bonds, in it and an analogous Zr MOF, which leads to more compliant materials with lower elastic moduli.

13.
J Mater Chem B ; 4(47): 7697-7707, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-32263827

ABSTRACT

We have used a family of Zr-based metal-organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug α-cyano-4-hydroxycinnamic acid (α-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of guest molecules. Our analysis revealed that the loading values of both molecules were higher for the MOFs containing unfunctionalized linkers. Confocal microscopy showed that all the materials were able to penetrate into cells, and the therapeutic effect of α-CHC on HeLa cells was enhanced when loaded (20 wt%) into the MOF with the longest linker. On one hand, calcein release required up to 3 days from the crystalline form for all the materials. On the other hand, the amorphous counterparts containing the bromo and nitro functional groups released only a fraction of the total loaded amount, and in the case of the amino-MOF a slow and progressive release was successfully achieved for 15 days. In the case of the materials loaded with α-CHC, no difference was observed between the crystalline and amorphous form of the materials. These results highlight the necessity of a balance between the pore size of the materials and the size of the guest molecules to accomplish a successful and efficient sustained release using this mechanical ball-milling process. Additionally, the endocytic pathway used by cells to internalize these MOFs may lead to diverse final cellular locations and consequently, different therapeutic effects. Understanding these cellular mechanisms will drive the design of more effective MOFs for drug delivery applications.

SELECTION OF CITATIONS
SEARCH DETAIL