Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Br J Psychol ; 115(1): 90-114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37632706

ABSTRACT

Perspective-taking (PT) accessibility has been recognized as an important factor in affecting moral reasoning, also playing a non-trivial role in moral investigation towards autonomous vehicles (AVs). A new proposal to deepen this effect leverages the principles of the veil of ignorance (VOI), as a moral reasoning device aimed to control self-interested decisions by limiting the access to specific perspectives and to potentially biased information. Throughout two studies, we deepen the role of VOI reasoning in the moral perception of AVs, disclosing personal and contingent information progressively throughout the experiment. With the use of the moral trilemma paradigm, two different VOI conditions were operationalized, inspired by the Original Position theory by John Rawls and the Equiprobability Model by John Harsanyi. Evidence suggests a significant role of VOI reasoning in affecting moral reasoning, which seems not independent from the order in which information is revealed. Coherently, a detrimental effect of self-involvement on utilitarian behaviours was detected. These results highlight the importance of considering PT accessibility and self-involvement when investigating moral attitudes towards AVs, since it can help the intelligibility of general concerns and hesitations towards this new technology.


Subject(s)
Autonomous Vehicles , Problem Solving , Humans , Morals , Cognition
2.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33951726

ABSTRACT

The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro-B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro- to pre-B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1's critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.


Subject(s)
Agammaglobulinemia/genetics , Chromatin/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Adolescent , Adult , B-Lymphocytes/physiology , Cell Differentiation/genetics , Cell Line , Child , Child, Preschool , Dendritic Cells/physiology , Female , Gene Expression Regulation, Developmental/genetics , HEK293 Cells , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Humans , Infant , Lymphopoiesis/genetics , Male , Mutation/genetics , Precursor Cells, B-Lymphoid/physiology , Stem Cells/physiology , Young Adult
3.
Nat Commun ; 11(1): 2109, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355159

ABSTRACT

Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification.


Subject(s)
CRISPR-Cas Systems , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Recombinational DNA Repair , DNA Breaks, Double-Stranded , Gene Editing , Genetic Engineering/methods , HCT116 Cells , HEK293 Cells , HeLa Cells , Homologous Recombination , Humans , K562 Cells , Phenotype , RNA, Guide, Kinetoplastida/metabolism , S Phase
SELECTION OF CITATIONS
SEARCH DETAIL