Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
Nature ; 601(7891): 125-131, 2022 01.
Article in English | MEDLINE | ID: mdl-34880496

ABSTRACT

All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear1, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness2. Here, using single-cell profiling and lineage tracing (SPLINTR)-an expressed barcoding strategy-we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (Slpi), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells3, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.


Subject(s)
Cell Competition , Clone Cells/pathology , Leukemia, Myeloid, Acute/pathology , Single-Cell Analysis , Animals , Cell Competition/drug effects , Cell Line , Cell Lineage/drug effects , Clone Cells/drug effects , Clone Cells/metabolism , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Secretory Leukocyte Peptidase Inhibitor/metabolism
2.
Nature ; 586(7827): 101-107, 2020 10.
Article in English | MEDLINE | ID: mdl-32939092

ABSTRACT

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Subject(s)
Cellular Reprogramming/genetics , Gene Expression Regulation , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Adult , Chromatin/genetics , Chromatin/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Transcription, Genetic
3.
Histopathology ; 78(4): 578-585, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32946634

ABSTRACT

AIMS: The advent of specific ALK-targeting drugs has radically changed the outcome of patients with ALK translocated non-small-cell lung cancer (NSCLC). However, emerging resistance to treatment with ALK inhibitors in these patients remains a major concern. In previous studies, we analysed two ALK+ patient cohorts (TP53 wild-type/TP53 mutated) in terms of copy number alterations. All patients belonging to the TP53 wild-type group had mainly genetically stable genomes, with one exception showing chromosomal instability and amplifications of several gene loci, including TERT. Here, we aimed to determine the prevalence of TERT amplifications in these ALK+ lung cancer patients by analysing an independent cohort of 109 ALK translocated cases. We further analysed the copy numbers of numerous cancer-relevant genes and other genetic aberrations. METHODS AND RESULTS: The prevalence of TERT amplifications was determined by means of FISH analyses. Copy numbers of 87 cancer-relevant genes were determined by NanoString nCounter® technology, FoundationOne® and lung-specific NGS panels in some of these TERT-amplified samples, and clinical data on patients with TERT-amplified tumours were collected. Our data revealed that five (4.6%) of all 109 analysed ALK+ patients harboured amplification of TERT and that these patients had genetically unstable genomes. CONCLUSIONS: Our preliminary study shows that ALK+ adenocarcinomas should be evaluated in the context of their genomic background in order to more clearly understand and predict patients' individual course of disease.


Subject(s)
Adenocarcinoma of Lung/genetics , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Telomerase/genetics , Adenocarcinoma of Lung/pathology , Anaplastic Lymphoma Kinase/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Humans , In Situ Hybridization, Fluorescence , Lung/pathology , Lung Neoplasms/pathology , Telomerase/metabolism , Translocation, Genetic
4.
J Pathol ; 246(1): 67-76, 2018 09.
Article in English | MEDLINE | ID: mdl-29885057

ABSTRACT

The anaplastic lymphoma kinase (ALK) rearrangement defines a distinct molecular subtype of non-small cell lung cancer (NSCLC). Despite the excellent initial efficacy of ALK inhibitors in patients with ALK+ lung cancer, resistance occurs almost inevitably. To date, there is no reliable biomarker allowing the identification of patients at higher risk of relapse. Here, we analysed a subset of 53 ALK+ tumours with and without TP53 mutation and ALK+ NSCLC cell lines by NanoString nCounter technology. We found that the co-occurrence of early TP53 mutations in ALK+ NSCLC can lead to chromosomal instability: 24% of TP53-mutated patients showed amplifications of known cancer genes such as MYC (14%), CCND1 (10%), TERT (5%), BIRC2 (5%), ORAOV1 (5%), and YAP1 (5%). MYC-overexpressing ALK+ TP53-mutated cells had a proliferative advantage compared to wild-type cells. ChIP-Seq data revealed MYC-binding sites within the promoter region of EML4, and MYC overexpression in ALK+ TP53-mutated cells resulted in an upregulation of EML4-ALK, indicating a potential MYC-dependent resistance mechanism in patients with increased MYC copy number. Our study reveals that ALK+ NSCLC represents a more heterogeneous subgroup of tumours than initially thought, and that TP53 mutations in that particular cancer type define a subset of tumours that harbour chromosomal instability, leading to the co-occurrence of pathogenic aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Gene Amplification , Genomic Instability , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins c-myc/genetics , Translocation, Genetic , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Anaplastic Lymphoma Kinase/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Male , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Middle Aged , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Phenotype , Proto-Oncogene Proteins c-myc/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
5.
J Pathol ; 244(2): 143-150, 2018 02.
Article in English | MEDLINE | ID: mdl-29149504

ABSTRACT

Breast adenoid cystic carcinoma (AdCC), a rare type of triple-negative breast cancer, has been shown to be driven by MYB pathway activation, most often underpinned by the MYB-NFIB fusion gene. Alternative genetic mechanisms, such as MYBL1 rearrangements, have been reported in MYB-NFIB-negative salivary gland AdCCs. Here we report on the molecular characterization by massively parallel sequencing of four breast AdCCs lacking the MYB-NFIB fusion gene. In two cases, we identified MYBL1 rearrangements (MYBL1-ACTN1 and MYBL1-NFIB), which were associated with MYBL1 overexpression. A third AdCC harboured a high-level MYB amplification, which resulted in MYB overexpression at the mRNA and protein levels. RNA-sequencing and whole-genome sequencing revealed no definite alternative driver in the fourth AdCC studied, despite high levels of MYB expression and the activation of pathways similar to those activated in MYB-NFIB-positive AdCCs. In this case, a deletion encompassing the last intron and part of exon 15 of MYB, including the binding site of ERG-1, a transcription factor that may downregulate MYB, and the exon 15 splice site, was detected. In conclusion, we demonstrate that MYBL1 rearrangements and MYB amplification probably constitute alternative genetic drivers of breast AdCCs, functioning through MYBL1 or MYB overexpression. These observations emphasize that breast AdCCs probably constitute a convergent phenotype, whereby activation of MYB and MYBL1 and their downstream targets can be driven by the MYB-NFIB fusion gene, MYBL1 rearrangements, MYB amplification, or other yet to be identified mechanisms. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Adenoid Cystic/genetics , Gene Amplification , Gene Fusion , Gene Rearrangement , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Triple Negative Breast Neoplasms/genetics , Biomarkers, Tumor/analysis , Carcinoma, Adenoid Cystic/chemistry , Carcinoma, Adenoid Cystic/pathology , Female , Genetic Predisposition to Disease , Humans , Middle Aged , Phenotype , Proto-Oncogene Proteins c-myb/analysis , Triple Negative Breast Neoplasms/chemistry , Triple Negative Breast Neoplasms/pathology
6.
J Pathol ; 242(1): 102-112, 2017 05.
Article in English | MEDLINE | ID: mdl-28188619

ABSTRACT

Chromosomal rearrangements encoding oncogenic fusion proteins are found in a wide variety of malignancies. The use of programmable nucleases to generate specific double-strand breaks in endogenous loci, followed by non-homologous end joining DNA repair, has allowed several of these translocations to be generated as constitutively expressed fusion genes within a cell population. Here, we describe a novel approach that combines CRISPR-Cas9 technology with homology-directed repair to engineer, capture, and modulate the expression of chromosomal translocation products in a human cell line. We have applied this approach to the genetic modelling of t(11;22)(q24;q12) and t(11;22)(p13;q12), translocation products of the EWSR1 gene and its 3' fusion partners FLI1 and WT1, present in Ewing's sarcoma and desmoplastic small round cell tumour, respectively. Our innovative approach allows for temporal control of the expression of engineered endogenous chromosomal rearrangements, and provides a means to generate models to study tumours driven by fusion genes. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Desmoplastic Small Round Cell Tumor/genetics , Recombinational DNA Repair/genetics , Sarcoma, Ewing/genetics , Translocation, Genetic , Artificial Gene Fusion/methods , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 22/genetics , DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Oncogene Proteins, Fusion/genetics , Tumor Cells, Cultured
7.
J Pathol ; 242(2): 165-177, 2017 06.
Article in English | MEDLINE | ID: mdl-28299801

ABSTRACT

Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated approach examining methylation, gene expression, and whole-exome sequencing was employed to ascertain the aetiology of HRD. Functional HRD breast cancers displayed genomic features of lack of competent HR, including large-scale state transitions and specific mutational signatures. Somatic and/or germline genetic alterations resulting in bi-allelic loss-of-function of HR genes underpinned functional HRD in 89% of cases, and were observed in only one of the 15 HR-proficient samples tested. These findings indicate the importance of a comprehensive genetic assessment of bi-allelic alterations in the HR pathway to deliver a precision medicine-based approach to select patients for therapies targeting tumour-specific DNA repair defects. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA Repair-Deficiency Disorders/genetics , Rad51 Recombinase/genetics , Recombinational DNA Repair , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms, Male/diagnosis , Breast Neoplasms, Male/genetics , DNA Repair-Deficiency Disorders/diagnosis , Female , Germ-Line Mutation , Homologous Recombination , Humans , Loss of Heterozygosity , Male , Middle Aged , Mutation , Young Adult
8.
J Pathol ; 238(3): 381-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26592504

ABSTRACT

Uterine adenosarcomas (UAs) are biphasic lesions composed of a malignant mesenchymal (ie stromal) component and an epithelial component. UAs are generally low-grade and have a favourable prognosis, but may display sarcomatous overgrowth (SO), which is associated with a worse outcome. We hypothesized that, akin to breast fibroepithelial lesions, UAs are mesenchymal neoplasms in which clonal somatic genetic alterations are restricted to the mesenchymal component. To characterize the somatic genetic alterations in UAs and to test this hypothesis, we subjected 20 UAs to a combination of whole-exome (n = 6), targeted capture (n = 13) massively parallel sequencing (MPS) and/or RNA sequencing (n = 6). Only three genes, FGFR2, KMT2C and DICER1, were recurrently mutated, all in 2/19 cases; however, 26% (5/19) and 21% (4/19) of UAs harboured MDM2/CDK4/HMGA2 and TERT gene amplification, respectively, and two cases harboured fusion genes involving NCOA family members. Using a combination of laser-capture microdissection and in situ techniques, we demonstrated that the somatic genetic alterations detected by MPS were restricted to the mesenchymal component. Furthermore, mitochondrial DNA sequencing of microdissected samples revealed that epithelial and mesenchymal components of UAs were clonally unrelated. In conclusion, here we provide evidence that UAs are genetically heterogeneous lesions and mesenchymal neoplasms.


Subject(s)
Adenosarcoma/genetics , Mutation/genetics , Neoplasm Proteins/genetics , Uterine Neoplasms/genetics , Adenosarcoma/pathology , Female , Gene Fusion/genetics , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization , Sequence Analysis, RNA , Uterine Neoplasms/pathology
9.
J Pathol ; 238(4): 508-18, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26832993

ABSTRACT

Phyllodes tumours (PTs) are breast fibroepithelial lesions that are graded based on histological criteria as benign, borderline or malignant. PTs may recur locally. Borderline PTs and malignant PTs may metastasize to distant sites. Breast fibroepithelial lesions, including PTs and fibroadenomas, are characterized by recurrent MED12 exon 2 somatic mutations. We sought to define the repertoire of somatic genetic alterations in PTs and whether these may assist in the differential diagnosis of these lesions. We collected 100 fibroadenomas, 40 benign PTs, 14 borderline PTs and 22 malignant PTs; six, six and 13 benign, borderline and malignant PTs, respectively, and their matched normal tissue, were subjected to targeted massively parallel sequencing (MPS) using the MSK-IMPACT sequencing assay. Recurrent MED12 mutations were found in 56% of PTs; in addition, mutations affecting cancer genes (eg TP53, RB1, SETD2 and EGFR) were exclusively detected in borderline and malignant PTs. We found a novel recurrent clonal hotspot mutation in the TERT promoter (-124 C>T) in 52% and TERT gene amplification in 4% of PTs. Laser capture microdissection revealed that these mutations were restricted to the mesenchymal component of PTs. Sequencing analysis of the entire cohort revealed that the frequency of TERT alterations increased from benign (18%) to borderline (57%) and to malignant PTs (68%; p < 0.01), and TERT alterations were associated with increased levels of TERT mRNA (p < 0.001). No TERT alterations were observed in fibroadenomas. An analysis of TERT promoter sequencing and gene amplification distinguished PTs from fibroadenomas with a sensitivity and a positive predictive value of 100% (CI 95.38-100%) and 100% (CI 85.86-100%), respectively, and a sensitivity and a negative predictive value of 39% (CI 28.65-51.36%) and 68% (CI 60.21-75.78%), respectively. Our results suggest that TERT alterations may drive the progression of PTs, and may assist in the differential diagnosis between PTs and fibroadenomas. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fibroadenoma/pathology , Mutation/genetics , Neoplasm Recurrence, Local/pathology , Phyllodes Tumor/pathology , Promoter Regions, Genetic , Telomerase/genetics , Diagnosis, Differential , Female , Fibroadenoma/diagnosis , Gene Amplification/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Phyllodes Tumor/diagnosis
10.
Mod Pathol ; 29(11): 1292-1305, 2016 11.
Article in English | MEDLINE | ID: mdl-27491809

ABSTRACT

Adenoid cystic carcinoma of the breast is a rare histological type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Although the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intratumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by the MYB-NFIB fusion gene and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple-negative breast cancer of no special type may involve the selection of neoplastic clones and/or the acquisition of additional genetic alterations.


Subject(s)
Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Adult , Disease Progression , Female , Humans
11.
Histopathology ; 68(2): 262-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25951887

ABSTRACT

AIMS: The aims of this study were to perform a whole-exome sequencing analysis of a breast cylindroma and to investigate the role of molecular analyses in the differentiation between breast cylindroma, a benign tumour that displays MYB expression, and CYLD gene mutations, and its main differential diagnosis, the breast solid-basaloid adenoid cystic carcinoma, a malignant tumour that is characterized by the presence of the MYB-NFIB fusion gene and MYB overexpression. METHODS AND RESULTS: A 66-year-old female underwent quadrantectomy after an irregular dense shadow was discovered in the right breast at the screening mammogram. Histologically, the tumour displayed features suggestive of a solid-basaloid variant of adenoid cystic carcinoma with a differential diagnosis of cylindroma. Fluorescence in situ hybridization, reverse transcription-polymerase chain reaction, immunohistochemistry and whole-exome sequencing revealed absence of the MYB-NFIB fusion gene, low levels of MYB protein expression and a clonal somatic CYLD splice site mutation associated with loss of heterozygosity of the wild-type allele. CONCLUSIONS: The results of the histological, immunohistochemical and molecular analyses were consistent with a diagnosis of breast cylindroma, providing a proof-of-principle that the integration of histopathological and molecular approaches can help to differentiate between a low-malignant potential and a benign breast tumour of triple-negative phenotype.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Carcinoma, Adenoid Cystic/diagnosis , Aged , Biomarkers, Tumor/metabolism , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/surgery , Exome/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Mastectomy, Segmental , Phenotype , Sequence Analysis, DNA
12.
Histopathology ; 68(7): 1055-62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26426580

ABSTRACT

AIMS: Polymorphous low-grade adenocarcinoma (PLGA) is the second most common intra-oral salivary gland malignancy. The vast majority of PLGAs harbour a PRKD1 E710D hot-spot somatic mutation or somatic rearrangements of PRKD1, PRKD2 or PRKD3. Given the kinase domain homology among PRKD1, PRKD2 and PRKD3, we sought to define whether PLGAs lacking PRKD1 somatic mutations or PRKD gene family rearrangements would be driven by somatic mutations affecting the kinase domains of PRKD2 or PRKD3. METHODS AND RESULTS: DNA was extracted from eight microdissected PLGAs lacking PRKD1 somatic mutations or PRKD gene family rearrangements. Samples were thoroughly centrally reviewed, microdissected and subjected to Sanger sequencing of the kinase domains of the PRKD2 and PRKD3 genes. None of the PLGAs lacking PRKD1 somatic mutations or PRKD gene family rearrangements harboured somatic mutations in the kinase domains of the PRKD2 or PRKD3 genes. CONCLUSION: PLGAs lacking PRKD1 somatic mutations or PRKD gene family rearrangements are unlikely to harbour somatic mutations in the kinase domains of PRKD2 or PRKD3. Further studies are warranted to define the driver genetic events in this subgroup of PLGAs.


Subject(s)
Adenocarcinoma/genetics , Protein Kinase C/genetics , Salivary Gland Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Adult , Aged , Amino Acid Sequence , Female , Gene Rearrangement , Genotype , Humans , Male , Microdissection , Middle Aged , Mutation , Protein Domains , Salivary Gland Neoplasms/diagnosis , Salivary Gland Neoplasms/enzymology , Salivary Gland Neoplasms/pathology , Salivary Glands/pathology , Sequence Alignment , Sequence Analysis, DNA
13.
Int J Gynecol Pathol ; 35(4): 289-300, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26556035

ABSTRACT

Endometrial carcinomas (ECs) are heterogeneous at the genetic level. Although TP53 mutations are highly recurrent in serous endometrial carcinomas (SECs), these are also present in a subset of endometrioid endometrial carcinomas (EECs). Here, we sought to define the frequency, pattern, distribution, and type of TP53 somatic mutations in ECs by performing a reanalysis of the publicly available data from The Cancer Genome Atlas (TCGA). A total of 228 EECs (n=186) and SECs (n=42) from the TCGA data set, for which an integrated genomic characterization was performed, were interrogated for the presence and type of TP53 mutations, and for mutations in genes frequently mutated in ECs. TP53 mutations were found in 15% of EECs and 88% of SECs, and in 91% of copy-number-high and 35% of polymerase (DNA directed), epsilon, catalytic subunit (POLE) integrative genomic subtypes. In addition to differences in prevalence, variations in the type and pattern of TP53 mutations were observed between histologic types and between integrative genomic subtypes. TP53 hotspot mutations were significantly more frequently found in SECs (46%) than in EECs (15%). TP53-mutant EECs significantly more frequently harbored a co-occurring PTEN mutation than TP53-mutant SECs. Finally, a subset of TP53-mutant ECs (22%) was found to harbor frameshift or nonsense mutations. Given that nonsense and frameshift TP53 mutations result in distinct p53 immunohistochemical results that require careful interpretation, and that EECs and SECs display different patterns, types, and distributions of TP53 mutations, the use of the TP53/p53 status alone for the differential diagnosis of EECs and SECs may not be sufficient.


Subject(s)
Carcinoma, Endometrioid/genetics , Cystadenocarcinoma, Serous/genetics , Endometrial Neoplasms/genetics , Genome/genetics , Tumor Suppressor Protein p53/genetics , Carcinoma, Endometrioid/diagnosis , Cystadenocarcinoma, Serous/diagnosis , DNA Mutational Analysis , Endometrial Neoplasms/diagnosis , Endometrium/pathology , Female , Humans , Immunohistochemistry , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Tumor Suppressor Protein p53/metabolism
14.
J Pathol ; 237(2): 166-78, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26011570

ABSTRACT

Acinic cell carcinoma (ACC) of the breast is a rare form of triple-negative (that is, oestrogen receptor-negative, progesterone receptor-negative, HER2-negative) salivary gland-type tumour displaying serous acinar differentiation. Despite its triple-negative phenotype, breast ACCs are reported to have an indolent clinical behaviour. Here, we sought to define whether ACCs have a mutational repertoire distinct from that of other triple-negative breast cancers (TNBCs). DNA was extracted from microdissected formalin-fixed, paraffin-embedded sections of tumour and normal tissue from two pure and six mixed breast ACCs. Each tumour component of the mixed cases was microdissected separately. Tumour and normal samples were subjected to targeted capture massively parallel sequencing targeting all exons of 254 genes, including genes most frequently mutated in breast cancer and related to DNA repair. Selected somatic mutations were validated by targeted amplicon resequencing and Sanger sequencing. Akin to other forms of TNBC, the most frequently mutated gene found in breast ACCs was TP53 (one pure and six mixed cases). Additional somatic mutations affecting breast cancer-related genes found in ACCs included PIK3CA, MTOR, CTNNB1, BRCA1, ERBB4, ERBB3, INPP4B, and FGFR2. Copy number alteration analysis revealed complex patterns of gains and losses similar to those of common forms of TNBCs. Of the mixed cases analysed, identical somatic mutations were found in the acinic and the high-grade non-acinic components in two out of four cases analysed, providing evidence of their clonal relatedness. In conclusion, breast ACCs display the hallmark somatic genetic alterations found in high-grade forms of TNBC, including complex patterns of gene copy number alterations and recurrent TP53 mutations. Furthermore, we provide circumstantial genetic evidence to suggest that ACCs may constitute the substrate for the development of more aggressive forms of triple-negative disease.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Acinar Cell/genetics , Mutation , Adult , Aged , Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Breast Neoplasms/pathology , Carcinoma, Acinar Cell/chemistry , Carcinoma, Acinar Cell/pathology , DNA Copy Number Variations , DNA Mutational Analysis , Disease Progression , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Microdissection , Middle Aged , Neoplasm Grading , Phenotype , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
15.
J Pathol ; 237(2): 179-89, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26095796

ABSTRACT

Adenoid cystic carcinoma (AdCC) is a rare type of triple-negative breast cancer (TNBC) characterized by the presence of the MYB-NFIB fusion gene. The molecular underpinning of breast AdCCs other than the MYB-NFIB fusion gene remains largely unexplored. Here we sought to define the repertoire of somatic genetic alterations of breast AdCCs. We performed whole-exome sequencing, followed by orthogonal validation, of 12 breast AdCCs to determine the landscape of somatic mutations and gene copy number alterations. Fluorescence in situ hybridization and reverse-transcription PCR were used to define the presence of MYB gene rearrangements and MYB-NFIB chimeric transcripts. Unlike common forms of TNBC, we found that AdCCs have a low mutation rate (0.27 non-silent mutations/Mb), lack mutations in TP53 and PIK3CA and display a heterogeneous constellation of known cancer genes affected by somatic mutations, including MYB, BRAF, FBXW7, SMARCA5, SF3B1 and FGFR2. MYB and TLN2 were affected by somatic mutations in two cases each. Akin to salivary gland AdCCs, breast AdCCs were found to harbour mutations targeting chromatin remodelling, cell adhesion, RNA biology, ubiquitination and canonical signalling pathway genes. We observed that, although breast AdCCs had rather simple genomes, they likely display intra-tumour genetic heterogeneity at diagnosis. Taken together, these findings demonstrate that the mutational burden and mutational repertoire of breast AdCCs are more similar to those of salivary gland AdCCs than to those of other types of TNBCs, emphasizing the importance of histological subtyping of TNBCs. Furthermore, our data provide direct evidence that AdCCs harbour a distinctive mutational landscape and genomic structure, irrespective of the disease site of origin.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Adenoid Cystic/genetics , Genomics , Mutation , Triple Negative Breast Neoplasms/genetics , Biomarkers, Tumor/analysis , Carcinoma, Adenoid Cystic/chemistry , Carcinoma, Adenoid Cystic/pathology , DNA Copy Number Variations , DNA Mutational Analysis , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Gene Frequency , Genes, myb , Genetic Predisposition to Disease , Genomics/methods , Humans , In Situ Hybridization, Fluorescence , Oncogene Proteins, Fusion/genetics , Phenotype , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Triple Negative Breast Neoplasms/chemistry , Triple Negative Breast Neoplasms/pathology
16.
Histopathology ; 67(5): 719-29, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25855048

ABSTRACT

AIMS: Somatic mutations in exon 2 of the mediator complex subunit 12 (MED12) gene have been identified in 60% of breast fibroadenomas (FAs). The aim of this study was to define whether phyllodes tumours (PTs) would harbour MED12 somatic mutations in a way akin to FAs. METHODS AND RESULTS: A collection of 73 fibroepithelial tumours (including 26 FAs, 25 benign PTs, nine borderline PTs and 13 malignant PTs) from 64 patients was retrieved from the authors' institution. Sections from formalin-fixed paraffin-embedded (FFPE) blocks were microdissected to ensure an enrichment in neoplastic stromal elements of >70%. DNA samples extracted from tumour and matched normal tissues were subjected to Sanger sequencing of exon 2 of the MED12 gene. MED12 exon 2 somatic mutations, including 28 somatic single nucleotide variants and 19 insertions and deletions, were found in 65%, 88%, 78% and 8% of FAs, benign PTs, borderline PTs and malignant PTs, respectively. Malignant PTs harboured MED12 exon 2 somatic mutations significantly less frequently than FAs, benign and borderline PTs. CONCLUSIONS: Although MED12 exon 2 somatic mutations probably constitute the driver genetic event of most FAs, benign and borderline PTs, our results suggest that the majority of malignant PTs may be driven by other genetic/epigenetic alterations.


Subject(s)
Breast Neoplasms/genetics , Fibroadenoma/genetics , Mediator Complex/genetics , Phyllodes Tumor/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Microdissection , Mutation , Reverse Transcriptase Polymerase Chain Reaction
17.
EMBO Rep ; 14(9): 837-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23877428

ABSTRACT

Here we report that ILK localizes in the mouse primary cilium, a sensory organelle required for signalling by the Hedgehog (Hh) pathway. Genetic or pharmacological inhibition of ILK blocks ciliary accumulation of the Hh pathway effector smoothened (Smo) and suppresses the induction of Gli transcription factor mRNAs by SHh. Conditional deletion of ILK or Smo also inhibits SHh-driven activation of Gli2 in the embryonic mouse cerebellum. ILK regulation of Hh signalling probably requires the physical interaction of ILK and Smo in the cilium, and we also show selective cilia-associated interaction of ILK with ß-arrestin, a known mediator of Smo-dependent signalling.


Subject(s)
Cerebellum/metabolism , Cilia/metabolism , Hedgehog Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Arrestins/metabolism , Cell Line , Cerebellum/embryology , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Smoothened Receptor , Zinc Finger Protein Gli2
18.
Breast Cancer Res ; 16(3): 210, 2014 May 20.
Article in English | MEDLINE | ID: mdl-25928070

ABSTRACT

In recent years it has become clear that cancer cells within a single tumor can display striking morphological, genetic and behavioral variability. Burgeoning genetic, epigenetic and phenomenological data support the existence of intra-tumor genetic heterogeneity in breast cancers; however, its basis is yet to be fully defined. Two of the most widely evoked concepts to explain the origin of heterogeneity within tumors are the cancer stem cell hypothesis and the clonal evolution model. Although the cancer stem cell model appeared to provide an explanation for the variability among the neoplastic cells within a given cancer, advances in massively parallel sequencing have provided several lines of evidence to suggest that intra-tumor genetic heterogeneity likely plays a fundamental role in the phenotypic heterogeneity observed in cancers. Many challenges remain, however, in the interpretation of the next generation sequencing results obtained so far. Here we review the models that explain tumor heterogeneity, the causes of intra-tumor genetic diversity and their impact on our understanding and management of breast cancer, methods to study intra-tumor heterogeneity and the assessment of intra-tumor genetic heterogeneity in the clinic.


Subject(s)
Breast Neoplasms/genetics , Genetic Heterogeneity , Mutation , Neoplastic Stem Cells/metabolism , Breast Neoplasms/pathology , Clonal Evolution , Female , Humans , Models, Genetic , Neoplastic Stem Cells/pathology
19.
iScience ; 27(1): 108694, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38213620

ABSTRACT

An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified. Here, we performed single-cell RNA sequencing on islet cells from NOD mice fed an HAMSAB or control diet. HAMSAB induced a regulatory gene expression profile in pancreas-infiltrated immune cells. Moreover, HAMSAB maintained the expression of ß-cell functional genes and decreased cellular stress. HAMSAB-fed mice showed preserved pancreatic endocrine cell identity, evaluated by decreased numbers of poly-hormonal cells. Finally, SCFA increased insulin levels in human ß-like cells and improved transplantation outcome in NOD/SCID mice. Our findings support the use of metabolite-based diet as attractive approach to improve glucose control in T1D.

20.
Genome Biol ; 25(1): 81, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553769

ABSTRACT

The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.


Subject(s)
Genomics , RNA , Humans , Animals , Mice , Tissue Fixation/methods , Reproducibility of Results , Sequence Analysis, RNA/methods , RNA/genetics , Genomics/methods , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL