Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Publication year range
1.
Int J Obes (Lond) ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802661

ABSTRACT

BACKGROUND: Mitochondrial heteroplasmy reflects genetic diversity within individuals due to the presence of varying mitochondrial DNA (mtDNA) sequences, possibly affecting mitochondrial function and energy production in cells. Rapid growth during early childhood is a critical development with long-term implications for health and well-being. In this study, we investigated if cord blood mtDNA heteroplasmy is associated with rapid growth at 6 and 12 months and overweight in childhood at 4-6 years. METHODS: This study included 200 mother-child pairs of the ENVIRONAGE birth cohort. Whole mitochondrial genome sequencing was performed to determine mtDNA heteroplasmy levels (in variant allele frequency; VAF) in cord blood. Rapid growth was defined for each child as the difference between WHO-SD scores of predicted weight at either 6 or 12 months and birth weight. Logistic regression models were used to determine the association of mitochondrial heteroplasmy with rapid growth and childhood overweight. Determinants of relevant cord blood mitochondrial heteroplasmies were identified using multiple linear regression models. RESULTS: One % increase in VAF of cord blood MT-D-Loop16362T > C heteroplasmy was associated with rapid growth at 6 months (OR = 1.03; 95% CI: 1.01-1.05; p = 0.001) and 12 months (OR = 1.02; 95% CI: 1.00-1.03; p = 0.02). Furthermore, this variant was associated with childhood overweight at 4-6 years (OR = 1.01; 95% CI 1.00-1.02; p = 0.05). Additionally, rapid growth at 6 months (OR = 3.00; 95% CI: 1.49-6.14; p = 0.002) and 12 months (OR = 4.05; 95% CI: 2.06-8.49; p < 0.001) was also associated with childhood overweight at 4-6 years. Furthermore, we identified maternal age, pre-pregnancy BMI, maternal education, parity, and gestational age as determinants of cord blood MT-D-Loop16362T > C heteroplasmy. CONCLUSIONS: Our findings, based on mitochondrial DNA genotyping, offer insights into the molecular machinery leading to rapid growth in early life, potentially explaining a working mechanism of the development toward childhood overweight.

2.
Mass Spectrom Rev ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143314

ABSTRACT

With urinary proteomics profiling (UPP) as exemplary omics technology, this review describes a workflow for the analysis of omics data in large study populations. The proposed workflow includes: (i) planning omics studies and sample size considerations; (ii) preparing the data for analysis; (iii) preprocessing the UPP data; (iv) the basic statistical steps required for data curation; (v) the selection of covariables; (vi) relating continuously distributed or categorical outcomes to a series of single markers (e.g., sequenced urinary peptide fragments identifying the parental proteins); (vii) showing the added diagnostic or prognostic value of the UPP markers over and beyond classical risk factors, and (viii) pathway analysis to identify targets for personalized intervention in disease prevention or treatment. Additionally, two short sections respectively address multiomics studies and machine learning. In conclusion, the analysis of adverse health outcomes in relation to omics biomarkers rests on the same statistical principle as any other data collected in large population or patient cohorts. The large number of biomarkers, which have to be considered simultaneously requires planning ahead how the study database will be structured and curated, imported in statistical software packages, analysis results will be triaged for clinical relevance, and presented.

3.
Mol Psychiatry ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052982

ABSTRACT

Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.

4.
Environ Res ; 244: 117990, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38141917

ABSTRACT

BACKGROUND: Telomere length (TL) and mitochondrial DNA (mtDNA) are central markers of vital biological mechanisms, including cellular aging. Prenatal air pollution exposure may impact molecular markers of aging leading to adverse health effects. OBJECTIVE: To perform a systematic review on human population-based studies investigating the association between prenatal air pollution exposure and TL or mtDNA content at birth. METHODOLOGY: Searches were undertaken on PubMed and Web of Science until July 2023. The framework of the review was based on the PRISMA-P guidelines. RESULTS: Nineteen studies studied prenatal air pollution and TL or mtDNA content at birth. Studies investigating TL or mtDNA content measured at any other time or did not evaluate prenatal air pollution were excluded. Twelve studies (including 4381 participants with study sample range: 97 to 743 participants) investigated newborn TL and eight studies (including 3081 participants with study sample range: 120 to 743 participants) investigated mtDNA content at birth. Seven studies focused on particulate matter (PM2.5) exposure and newborn TL of which all, except two, showed an inverse association in at least one of the gestational trimesters. Of the eight studies on mtDNA content, four focused on PM2.5 air pollution with two of them reporting an inverse association. For PM2.5 exposure, observations on trimester-specific effects were inconsistent. Current literature showing associations with other prenatal air pollutants (including nitrogen oxides, sulfur dioxide, carbon monoxide and ozone) is inconsistent. CONCLUSION: This review provides initial evidence that prenatal PM2.5 exposure impacts the telomere-mitochondrial axis of aging at birth. The current evidence did not reveal harmonious observations for trimester-specific associations nor showed consistent effects of other air pollutants. Future studies should elucidate the specific contribution of prenatal exposure to pollutants other than PM in relation to TL and mtDNA content at birth, and the potential later life health consequences.


Subject(s)
Air Pollutants , Air Pollution , Infant, Newborn , Pregnancy , Female , Humans , Systematic Reviews as Topic , Meta-Analysis as Topic , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/analysis , Telomere , DNA, Mitochondrial , Maternal Exposure/adverse effects , Environmental Exposure/analysis
5.
Environ Res ; 252(Pt 1): 118846, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582428

ABSTRACT

BACKGROUND: Appetite hormones are considered a promising target in fighting obesity as impaired appetite hormone levels have already been associated with obesity. However, further insights in the drivers of appetite hormone levels are needed. OBJECTIVES: In this study, we investigated the associations of fasting appetite hormone levels with lifestyle and environmental exposures in children and adolescents. METHODS: A total of 534 fasting blood samples were collected from children and adolescents (4-16y,50% boys) and appetite hormone levels (glucagon-like peptide-1 (GLP-1), peptide YY (PYY), pancreatic polypeptide (PP), leptin and ghrelin) were measured. Exposures included dietary quality (fiber-rich food intake, sugar propensity, fat propensity), psychosocial stress (happiness, negative emotions, negative life events and emotional problems), sleep duration, physical activity and environmental quality (long term black carbon (BC), particulate matter <2.5 µM (PM2.5), nitrogen dioxide (NO2) exposure, and green space in a 100 m and 2000 m radius around the residence). A multi-exposure score was calculated to combine all the exposures at study in one measure. Associations of individual exposures and multi-exposure score with appetite hormone levels were evaluated using linear mixed regression models adjusting for sex, age, socioeconomic status, waist-to-height ratio and multiple testing. RESULTS: GLP-1 was associated with air pollution exposure (NO2 ß* = -0.13, BC ß* = -0.15, PM2.5 ß* = -0.16, all p < 0.001). Leptin was associated with green space in a 100 m radius around the residence (ß* = -0.11; p = 0.002). Ghrelin was associated with negative emotions (active ghrelin ß* = -0.16; p = 0.04, total ghrelin ß* = -0.23; p = 0.0051) and happiness (active ghrelin ß* = 0.25; p < 0.001, total ghrelin ß* = 0.26; p < 0.001). Furthermore, total ghrelin levels were associated with the multi-exposure score, reflecting unhealthy exposures and lifestyle (ß* = -0.22; p = 0.036). DISCUSSION: Our findings provide new insights into the associations of exposures with appetite hormone levels, which are of high interest for preventive obesity research. Further research is crucial to reveal the underlying mechanisms of the observed associations.


Subject(s)
Environmental Exposure , Life Style , Humans , Child , Male , Female , Adolescent , Child, Preschool , Ghrelin/blood , Glucagon-Like Peptide 1/blood , Appetite , Leptin/blood , Peptide YY/blood
6.
Article in English | MEDLINE | ID: mdl-38246982

ABSTRACT

Shortened telomere length (TL) has been associated with lower cognitive performance, different neurological diseases in adults, and certain neurodevelopmental disorders in children. However, the evidence about the association between TL and neuropsychological developmental outcomes in children from the general population is scarce. Therefore, this study aimed to explore the association between TL and neuropsychological function in children 4-5 years of age. We included 686 children from the INMA Project, a population-based birth cohort in Spain. Leucocyte TL was determined by quantitative PCR method, and neuropsychological outcomes were measured using the McCarthy Scales of Children's Abilities (MCSA). Multiple linear regression models were used to estimate associations adjusted for potential confounding variables. Main findings showed that a longer TL was associated with a higher mean working memory score (ß = 4.55; 95% CI = 0.39, 8.71). In addition, longer TL was associated with a higher mean global quantitative score (ß = 3.85; 95% CI = -0.19, 7.89), although the association was marginally significant. To our knowledge, this is the first study that shows a positive association between TL and better neuropsychological outcomes in children. Although further research is required to confirm these results, this study supports the hypothesis that TL is essential in protecting and maintaining a child's health, including cognitive functions such as working memory.

7.
Eur Respir J ; 62(1)2023 07.
Article in English | MEDLINE | ID: mdl-37343978

ABSTRACT

BACKGROUND: Air pollution exposure is one of the major risk factors for aggravation of respiratory diseases. We investigated whether exposure to air pollution and accumulated black carbon (BC) particles in blood were associated with coronavirus disease 2019 (COVID-19) disease severity, including the risk for intensive care unit (ICU) admission and duration of hospitalisation. METHODS: From May 2020 until March 2021, 328 hospitalised COVID-19 patients (29% at intensive care) were recruited from two hospitals in Belgium. Daily exposure levels (from 2016 to 2019) for particulate matter with aerodynamic diameter <2.5 µm and <10 µm (PM2.5 and PM10, respectively), nitrogen dioxide (NO2) and BC were modelled using a high-resolution spatiotemporal model. Blood BC particles (internal exposure to nano-sized particles) were quantified using pulsed laser illumination. Primary clinical parameters and outcomes included duration of hospitalisation and risk of ICU admission. RESULTS: Independent of potential confounders, an interquartile range (IQR) increase in exposure in the week before admission was associated with increased duration of hospitalisation (PM2.5 +4.13 (95% CI 0.74-7.53) days, PM10 +4.04 (95% CI 1.24-6.83) days and NO2 +4.54 (95% CI 1.53-7.54) days); similar effects were observed for long-term NO2 and BC exposure on hospitalisation duration. These effect sizes for an IQR increase in air pollution on hospitalisation duration were equivalent to the effect of a 10-year increase in age on hospitalisation duration. Furthermore, for an IQR higher blood BC load, the OR for ICU admission was 1.33 (95% CI 1.07-1.65). CONCLUSIONS: In hospitalised COVID-19 patients, higher pre-admission ambient air pollution and blood BC levels predicted adverse outcomes. Our findings imply that air pollution exposure influences COVID-19 severity and therefore the burden on medical care systems during the COVID-19 pandemic.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Soot , Nitrogen Dioxide/adverse effects , Pandemics , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Hospitalization
8.
Pediatr Res ; 93(5): 1419-1424, 2023 04.
Article in English | MEDLINE | ID: mdl-35974160

ABSTRACT

BACKGROUND: Inadequate sleep duration has been suggested as a chronic stressor associated with changes in telomere length (TL). This study aimed to explore the association between sleep duration and TL using the INMA birth cohort study data. METHODS: A total of 1014 children were included in this study (cross-sectional: 686; longitudinal: 872). Sleep duration (h/day) was reported by caregivers at 4 years and classified into tertiles (7-10 h/day; >10-11 h/day; >11-14 h/day). Leucocyte TL at 4 and 7-9 years were measured using quantitative PCR methods. Multiple robust linear regression models, through log-level regression models, were used to report the % of difference among tertiles of sleep duration. RESULTS: In comparison to children who slept between >10 and 11 h/day, those in the highest category (more than 11 h/day) had 8.5% (95% CI: 3.56-13.6) longer telomeres at 4 years. Longitudinal analysis showed no significant association between sleep duration at 4 years and TL at 7-9 years. CONCLUSION: Children who slept more hours per day had longer TL at 4 years independently of a wide range of confounder factors. Environmental conditions, such as sleep duration, might have a major impact on TL during the first years of life. IMPACT: Telomere length was longer in children with longer sleep duration (>11 h/day) independently of a wide range of confounder factors at age 4 and remained consistent by sex. Sleep routines are encouraged to promote positive child development, like the number of hours of sleep duration. Considering the complex biology of telomere length, future studies still need to elucidate which biological pathways might explain the association between sleep duration and telomere length.


Subject(s)
Sleep , Telomere , Humans , Child , Child, Preschool , Cohort Studies , Spain , Cross-Sectional Studies
9.
Environ Sci Technol ; 57(1): 350-359, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36516295

ABSTRACT

Mitochondria are sensitive to oxidative stress, which can be caused by traffic-related air pollution. Placental mitochondrial DNA (mtDNA) mutations have been previously linked with air pollution. However, the relationship between prenatal air pollution and cord-blood mtDNA mutations has been poorly understood. Therefore, we hypothesized that prenatal particulate matter (PM2.5) and NO2 exposures are associated with cord-blood mtDNA heteroplasmy. As part of the ENVIRONAGE cohort, 200 mother-newborn pairs were recruited. Cord-blood mitochondrial single-nucleotide polymorphisms were identified by whole mitochondrial genome sequencing, and heteroplasmy levels were evaluated based on the variant allele frequency (VAF). Outdoor PM2.5 and NO2 concentrations were determined by a high-resolution spatial-temporal interpolation method based on the maternal residential address. Distributed lag linear models were used to determine sensitive time windows for the association between NO2 exposure and cord-blood mtDNA heteroplasmy. A 5 µg/m3 increment in NO2 was linked with MT-D-Loop16311T>C heteroplasmy from gestational weeks 17-25. MT-CYTB14766C>T was negatively associated with NO2 exposure in mid pregnancy, from weeks 14-17, and positively associated in late pregnancy, from weeks 31-36. No significant associations were observed with prenatal PM2.5 exposure. This is the first study to show that prenatal NO2 exposure is associated with cord-blood mitochondrial mutations and suggests two critical windows of exposure in mid-to-late pregnancy.


Subject(s)
Air Pollutants , Air Pollution , Infant, Newborn , Humans , Pregnancy , Female , Air Pollutants/analysis , Placenta/chemistry , Nitrogen Dioxide , Heteroplasmy , Maternal Exposure , Air Pollution/analysis , Particulate Matter/analysis , Mitochondria/genetics , Mitochondria/chemistry , DNA, Mitochondrial/genetics , DNA, Mitochondrial/pharmacology , Environmental Exposure
10.
Am J Respir Crit Care Med ; 205(1): 60-74, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34724391

ABSTRACT

Rationale: Fibrotic hypersensitivity pneumonitis (fHP) is an interstitial lung disease caused by sensitization to an inhaled allergen. Objectives: To identify the molecular determinants associated with progression of fibrosis. Methods: Nine fHP explant lungs and six unused donor lungs (as controls) were systematically sampled (4 samples/lung). According to microcomputed tomography measures, fHP cores were clustered into mild, moderate, and severe fibrosis groups. Gene expression profiles were assessed using weighted gene co-expression network analysis, xCell, gene ontology, and structure enrichment analysis. Gene expression of the prevailing molecular traits was also compared with idiopathic pulmonary fibrosis (IPF). The explant lung findings were evaluated in separate clinical fHP cohorts using tissue, BAL samples, and computed tomography scans. Measurements and Main Results: We found six molecular traits that associated with differential lung involvement. In fHP, extracellular matrix and antigen presentation/sensitization transcriptomic signatures characterized lung zones with only mild structural and histological changes, whereas signatures involved in honeycombing and B cells dominated the transcriptome in the most severely affected lung zones. With increasing disease severity, endothelial function was progressively lost, and progressive disruption in normal cellular homeostatic processes emerged. All six were also found in IPF, with largely similar associations with disease microenvironments. The molecular traits correlated with in vivo disease behavior in a separate clinical fHP cohort. Conclusions: We identified six molecular traits that characterize the morphological progression of fHP and associate with in vivo clinical behavior. Comparing IPF with fHP, the transcriptome landscape was determined considerably by local disease extent rather than by diagnosis alone.


Subject(s)
Alveolitis, Extrinsic Allergic/genetics , Alveolitis, Extrinsic Allergic/pathology , Lung/pathology , Transcriptome , Adult , Aged , Alveolitis, Extrinsic Allergic/diagnosis , Case-Control Studies , Disease Progression , Female , Fibrosis , Gene Expression Profiling , Genetic Markers , Humans , Linear Models , Male , Middle Aged , Reproducibility of Results , Severity of Illness Index
11.
BMC Med ; 20(1): 328, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36171556

ABSTRACT

BACKGROUND: Studies often evaluate mental health and well-being in association with individual health behaviours although evaluating multiple health behaviours that co-occur in real life may reveal important insights into the overall association. Also, the underlying pathways of how lifestyle might affect our health are still under debate. Here, we studied the mediation of different health behaviours or lifestyle factors on mental health and its effect on core markers of ageing: telomere length (TL) and mitochondrial DNA content (mtDNAc). METHODS: In this study, 6054 adults from the 2018 Belgian Health Interview Survey (BHIS) were included. Mental health and well-being outcomes included psychological and severe psychological distress, vitality, life satisfaction, self-perceived health, depressive and generalised anxiety disorder and suicidal ideation. A lifestyle score integrating diet, physical activity, smoking status, alcohol consumption and BMI was created and validated. On a subset of 739 participants, leucocyte TL and mtDNAc were assessed using qPCR. Generalised linear mixed models were used while adjusting for a priori chosen covariates. RESULTS: The average age (SD) of the study population was 49.9 (17.5) years, and 48.8% were men. A one-point increment in the lifestyle score was associated with lower odds (ranging from 0.56 to 0.74) for all studied mental health outcomes and with a 1.74% (95% CI: 0.11, 3.40%) longer TL and 4.07% (95% CI: 2.01, 6.17%) higher mtDNAc. Psychological distress and suicidal ideation were associated with a lower mtDNAc of - 4.62% (95% CI: - 8.85, - 0.20%) and - 7.83% (95% CI: - 14.77, - 0.34%), respectively. No associations were found between mental health and TL. CONCLUSIONS: In this large-scale study, we showed the positive association between a healthy lifestyle and both biological ageing and different dimensions of mental health and well-being. We also indicated that living a healthy lifestyle contributes to more favourable biological ageing.


Subject(s)
Life Style , Mental Health , Adult , Aged , Aging , Biomarkers , DNA, Mitochondrial , Female , Healthy Lifestyle , Humans , Male , Middle Aged
12.
J Transl Med ; 20(1): 353, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945616

ABSTRACT

BACKGROUND: Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS: We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS: DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS: We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.


Subject(s)
DNA Methylation , Fetal Blood , Aging/genetics , Biomarkers , DNA Methylation/genetics , DNA, Mitochondrial/genetics , Epigenesis, Genetic , Female , Humans , Infant, Newborn , Pregnancy
13.
Environ Res ; 213: 113656, 2022 10.
Article in English | MEDLINE | ID: mdl-35691385

ABSTRACT

BACKGROUND: Telomeres are vulnerable to various environmental exposures and lifestyle factors, encompassed in the exposome. Recent research shows that telomere length is substantially determined early in life and that exposures in childhood may have important consequences in setting later life telomere length. OBJECTIVES: We explore in a child population the associations of 17 exposures with telomere length and longitudinal telomere change. METHODS: Children (2.8-10.3y at baseline, 51.3% boys) were followed-up for five to seven years. Relative telomere length was measured at baseline and follow-up using quantitative real-time PCR. Exposures and lifestyle factors included: body composition (body mass index and waist circumference), dietary habits (sugar- and fat-rich food intake, vegetables and fruit intake), psychosocial stress (events, emotions, behaviour), sleep duration, physical activity, and residential environmental quality (longterm black carbon, particulate matter exposure, and residential green space). Cross-sectional (n=182) and longitudinal (n=150) analyses were assessed using linear regression models, adjusting for age, sex, socioeconomic status and multiple testing. RESULTS: Our longitudinal analyses showed that higher residential green space at baseline was associated with (ß=0.261, p=0.002) lower telomere attrition and that children with a higher waist circumference at baseline showed a higher telomere attrition (ß=-0.287, p=0.001). These two predictors were confirmed via LASSO variable selection and correction for multiple testing. In addition, children with more unhealthy exposures at baseline had a significantly higher telomere attrition over the follow-up period compared to children with more healthy exposures (ß=-0.200, p=0.017). DISCUSSION: Waist circumference and residential green space were identified as predictors associated with telomere attrition in childhood. These results further support the advantages of a healthy lifestyle from early age onwards and the importance of a green environment to promote molecular longevity from childhood onwards.


Subject(s)
Parks, Recreational , Telomere , Child , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Waist Circumference
14.
Environ Res ; 213: 113551, 2022 10.
Article in English | MEDLINE | ID: mdl-35654156

ABSTRACT

BACKGROUND: Mitochondria are known to respond to environmental stressors but whether green space is associated with mitochondrial abundance is unexplored. Furthermore, as exposures may affect health from early life onwards, we here evaluate if residential green space is associated with mitochondria DNA content (mtDNAc) in children. METHODS: In primary schoolchildren (COGNAC study), between 2012 and 2014, buccal mtDNAc was repeatedly (three times) assessed using qPCR. Surrounding low (<3m), high (≥3m) and total (sum of low and high) green space within different radii (100m-1000m) from the residence and distance to the nearest large green space (>0.5ha) were estimated using a remote sensing derived map. Given the repeated measures design, we applied a mixed-effects model with school and subject as random effect while adjusting for a priori chosen fixed covariates. RESULTS: mtDNAc was assessed in 246 children with a total of 436 measurements (mean age 10.3 years). Within a 1000m radius around the residential address, an IQR increment in low (11.0%), high (9.5%), and total (13.9%) green space was associated with a respectively 15.2% (95% CI: 7.2%-23.7%), 10.8% (95% CI: 4.5%-17.5%), and 13.4% (95% CI: 7.4%-19.7%) higher mtDNAc. Conversely, an IQR increment (11.6%) in agricultural area in the same radius was associated with a -3.4% (95% CI: 6.7% to -0.1%) lower mtDNAc. Finally, a doubling in distance to large green space was associated with a -5.2% (95% CI: 7.9 to -2.4%) lower mtDNAc. CONCLUSION: To our knowledge, this is the first study evaluating associations between residential surrounding green space and mtDNAc in children. Our results showed that green space was associated with a higher mtDNAc in children, which indicates the importance of the early life environment. To what extent these findings contribute to later life health effects should be further examined.


Subject(s)
DNA, Mitochondrial , Parks, Recreational , Child , DNA, Mitochondrial/genetics , Ethnicity , Humans , Mitochondria , Residence Characteristics , Schools
15.
Environ Res ; 208: 112603, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34995548

ABSTRACT

Green spaces are associated with increased well-being and reduced risk of developing psychiatric disorders. In this study, we aimed to investigate how residential proximity to green spaces was associated with stress response buffering during the COVID-19 pandemic in a prospective cohort of young mothers. We collected information on stress in 766 mothers (mean age: 36.6 years) from the ENVIRONAGE birth cohort at baseline of the study (from 2010 onwards), and during the COVID-19 pandemic (from December 2020 until May 2021). Self-reported stress responses due to the COVID-19 pandemic were the outcome measure. Green space was quantified in several radiuses around the residence based on high-resolution (1 m2) data. Using ordinal logistic regression, we estimated the odds of better resistance to reported stress, while controlling for age, socio-economic status, stress related to care for children, urbanicity, and household change in income during the pandemic. In sensitivity analyses we corrected for pre-pandemic stress levels, BMI, physical activity, and changes in health-related habits during the pandemic. We found that for an inter-quartile range contrast in residential green space 300 m and 500 m around the residence, participants were respectively 24% (OR = 1.24, 95%CI: 1.03 to 1.51) and 29% (OR = 1.29, 95%CI: 1.04 to 1.60) more likely to be in a more resistant category, independent of the aforementioned factors. These results remained robust after additionally controlling for pre-pandemic stress levels, BMI, physical activity, smoking status, urbanicity, psychological disorders, and changes in health-related habits during the pandemic. This prospective study in young mothers highlights the importance of proximity to green spaces, especially during challenging times.


Subject(s)
COVID-19/psychology , Mothers , Parks, Recreational , Adult , Child, Preschool , Female , Humans , Mothers/psychology , Pandemics , Prospective Studies
16.
Environ Health ; 21(1): 88, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36117180

ABSTRACT

BACKGROUND: Mitochondria play an important role in the energy metabolism and are susceptible to environmental pollution. Prenatal air pollution exposure has been linked with childhood obesity. Placental mtDNA mutations have been associated with prenatal particulate matter exposure and MT-ND4L10550A>G heteroplasmy has been associated with BMI in adults. Therefore, we hypothesized that in utero PM2.5 exposure is associated with cord blood MT-ND4L10550A>G heteroplasmy and early life growth. In addition, the role of cord blood MT-ND4L10550A>G heteroplasmy in overweight during early childhood is investigated. METHODS: This study included 386 mother-newborn pairs. Outdoor PM2.5 concentrations were determined at the maternal residential address. Cord blood MT-ND4L10550A>G heteroplasmy was determined using Droplet Digital PCR. Associations were explored using logistic regression models and distributed lag linear models. Mediation analysis was performed to quantify the effects of prenatal PM2.5 exposure on childhood overweight mediated by cord blood MT-ND4L10550A>G heteroplasmy. RESULTS: Prenatal PM2.5 exposure was positively associated with childhood overweight during the whole pregnancy (OR = 2.33; 95% CI: 1.20 to 4.51; p = 0.01), which was mainly driven by the second trimester. In addition, prenatal PM2.5 exposure was associated with cord blood MT-ND4L10550A>G heteroplasmy from gestational week 9 - 13. The largest effect was observed in week 10, where a 5 µg/m3 increment in PM2.5 was linked with cord blood MT-ND4L10550A>G heteroplasmy (OR = 0.93; 95% CI: 0.87 to 0.99). Cord blood MT-ND4L10550A>G heteroplasmy was also linked with childhood overweight (OR = 3.04; 95% CI: 1.15 to 7.50; p = 0.02). The effect of prenatal PM2.5 exposure on childhood overweight was mainly direct (total effect OR = 1.18; 95% CI: 0.99 to 1.36; natural direct effect OR = 1.20; 95% CI: 1.01 to 1.36)) and was not mediated by cord blood MT-ND4L10550A>G heteroplasmy. CONCLUSIONS: Cord blood MT-ND4L10550A>G heteroplasmy was linked with childhood overweight. In addition, in utero exposure to PM2.5 during the first trimester of pregnancy was associated with cord blood MT-ND4L10550A>G heteroplasmy in newborns. Our analysis did not reveal any mediation of cord blood MT-ND4L10550A>G heteroplasmy in the association between PM2.5 exposure and childhood overweight.


Subject(s)
Particulate Matter , Pediatric Obesity , Adult , Child , Child, Preschool , DNA, Mitochondrial , Female , Heteroplasmy , Humans , Infant, Newborn , Mitochondria/chemistry , Overweight/epidemiology , Overweight/genetics , Particulate Matter/adverse effects , Particulate Matter/analysis , Pediatric Obesity/epidemiology , Pediatric Obesity/genetics , Placenta/chemistry , Pregnancy
17.
Environ Res ; 182: 108993, 2020 03.
Article in English | MEDLINE | ID: mdl-31830692

ABSTRACT

Air pollution exposure is a major global health concern and has been associated with molecular aging. Unfortunately, the situation has not received much attention in the African region. The aim of this study was to investigate whether current personal ambient NO2 and benzene, toluene, ethyl-benzene and xylenes (ortho (o)-, meta (m)- and para (p)-xylene (BTEX) exposure is associated with leukocyte telomere length (LTL), a marker of molecular ageing, in apparently healthy women (mean ± SD age: 42.5 ± 13.4 years) residing in the Cape Town region of South Africa. The repeated measures study collected data from 61 women. Seven-day median (interquartile range (IQR)) personal NO2 and BTEX exposure levels were determined via compact passive diffusion samplers carried on the person prior to baseline (NO2: 14.2 (9.4-17.2) µg/m³; Benzene: 3.1 (2.1-5.3) µg/m³) and 6-month follow-up (NO2: 10.6 (6.6-13.6) µg/m³; Benzene: 2.2 (1.3-4.9) µg/m³) visits. LTL was measured at baseline and follow-up using a real-time PCR method. Multiple linear mixed model analyses (adjusting for age, body mass index, smoking, employment status, level of education and assessment visit) showed that each IQR increment increase in NO2 (7.0 µg/m³) and benzene (3.3 µg/m³) was associated with -7.30% (95% CI: -10.98 to -3.46%; p < 0.001) and -6.78% (95% CI: -11.88 to -1.39%; p = 0.015) difference in LTL, respectively. The magnitude of these effects of NO2 and benzene corresponds to the effect of an increase of 10.3- and 6.0-year in chronological age on LTL. Our study shows that personal exposures to NO2 and benzene are associated with molecular ageing as indicated by LTL in healthy women residing in the Cape Town region.


Subject(s)
Air Pollutants , Benzene , Nitrogen Dioxide , Telomere Shortening , Adult , Benzene/analysis , Benzene/toxicity , Benzene Derivatives , Cities , Environmental Exposure , Environmental Monitoring , Female , Humans , Leukocytes , Middle Aged , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , South Africa , Telomere , Telomere Shortening/drug effects
18.
Environ Sci Technol ; 53(10): 5966-5976, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31041867

ABSTRACT

Mitochondrial DNA (mtDNA) content and telomere length are putative aging biomarkers and are sensitive to environmental stressors, including pollutants. Our objective was to identify, from a set of environmental exposures, which exposure is associated with leukocyte mtDNA content and telomere length in adults. This study includes 175 adults from 50 to 65 years old from the cross-sectional Flemish Environment and Health study, of whom leukocyte telomere length and mtDNA content were determined using qPCR. The levels of exposure of seven metals, 11 organohalogens, and four perfluorinated compounds (PFHxS, PFNA, PFOA, PFOS) were measured. We performed sparse partial least-squares regression analyses followed by ordinary least-squares regression to assess the multipollutant associations. While accounting for possible confounders and coexposures, we identified that urinary cadmium (6.52%, 95% confidence interval, 1.06, 12.28), serum hexachlorobenzene (2.89%, 018, 5.68), and perfluorooctanesulfonic acid (11.38%, 5.97, 17.08) exposure were positively associated ( p < 0.05) with mtDNA content, while urinary copper (-9.88%, -14.82, -4.66) and serum perfluorohexanesulfonic acid (-4.75%, -8.79, -0.54) exposure were inversely associated with mtDNA content. Urinary antimony (2.69%, 0.45, 4.99) and mercury (1.91%, 0.42, 3.43) exposure were positively associated with leukocyte telomere length, while urinary copper (-3.52%, -6.60, -0.34) and serum perfluorooctanesulfonic acid (-3.64%, -6.60, -0.60) showed an inverse association. Our findings support the hypothesis that environmental pollutants interact with molecular hallmarks of aging.


Subject(s)
Environmental Pollutants , Fluorocarbons , Adult , Aged , Biomarkers , Cross-Sectional Studies , DNA, Mitochondrial , Environmental Exposure , Humans , Middle Aged
19.
J Transl Med ; 16(1): 254, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30208911

ABSTRACT

BACKGROUND: In the early-life environment, proper development of the placenta is essential for both fetal and maternal health. Telomere length at birth has been related to life expectancy. MicroRNAs (miRNAs) as potential epigenetic determinants of telomere length at birth have not been identified. In this study, we investigate whether placental miRNA expression is associated with placental telomere length at birth. METHODS: We measured the expression of seven candidate miRNAs (miR-16-5p, -20a-5p, -21-5p, -34a-5p, 146a-5p, -210-3p and -222-3p) in placental tissue at birth in 203 mother-newborn (51.7% girls) pairs from the ENVIRONAGE birth cohort. We selected miRNAs known to be involved in crucial cellular processes such as inflammation, oxidative stress, cellular senescence related to aging. Placental miRNA expression and relative average placental telomere length were measured using RT-qPCR. RESULTS: Both before and after adjustment for potential covariates including newborn's ethnicity, gestational age, paternal age, maternal smoking status, maternal educational status, parity, date of delivery and outdoor temperature during the 3rd trimester of pregnancy, placental miR-34a, miR-146a, miR-210 and miR-222 expression were significantly (p ≤ 0.03) and positively associated with placental relative telomere length in newborn girls. In newborn boys, only higher expression of placental miR-21 was weakly (p = 0.08) associated with shorter placental telomere length. Significant miRNAs explain around 6-8% of the telomere length variance at birth. CONCLUSIONS: Placental miR-21, miR-34a, miR-146a, miR-210 and miR-222 exhibit sex-specific associations with telomere length in placenta. Our results indicate miRNA expression in placental tissue could be an important determinant in the process of aging starting from early life onwards.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Placenta/metabolism , Sex Characteristics , Adult , Female , Humans , Infant, Newborn , Male , MicroRNAs/metabolism , Pregnancy
20.
Respir Res ; 19(1): 132, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29986708

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis is a fatal lung disease characterized by a progressive formation of fibroblastic foci in the interstitium. This disease is strongly associated with telomere dysfunction but the extent of telomere shortening and consequent chromosomal damage within IPF lungs and with regional disease severity remains unknown. METHODS: Explanted IPF lungs (n = 10) were collected from transplant surgeries with six samples per lung analysed to capture the regional heterogeneity ranging from mild to severe disease. Non-used donor lungs (n = 6) were collected as "healthy" controls. Structural changes related to disease severity (microCT surface density), relative telomere length (real-time qPCR), and quantitative histology of chromosomal damage (γ-H2A.X) and extracellular matrix (elastin, total collagen, collagen 1, and collagen 3) were measured. A multivariate linear mixed-effects model controlling for subject was used to identify association of disease severity or fibrotic markers with telomere length and chromosomal damage. RESULTS: We observed shorter telomere length (p = 0.001) and increased chromosomal damage (p = 0.018) in IPF lungs compared to controls. In IPF lungs, telomere length was associated with total collagen (p < 0.001) but not with structural changes of disease severity. Chromosomal damage was positively associated with increased elastin (p = 0.006) and negatively with structural disease severity (p = 0.046). Extensive γ-H2A.X staining was also present in airway epithelial cells. CONCLUSIONS: Telomere length and chromosomal damage are involved in IPF with regional variation in telomere length and chromosomal damage associated with pathological changes in tissue structure and the extracellular matrix.


Subject(s)
Chromosome Aberrations , DNA Damage/physiology , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Telomere Shortening/physiology , Aged , Female , Humans , Male , Middle Aged , Telomere/pathology , Telomere/physiology , X-Ray Microtomography/trends
SELECTION OF CITATIONS
SEARCH DETAIL